ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom Unicode version

Theorem alcom 1466
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom  |-  ( A. x A. y ph  <->  A. y A. x ph )

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1436 . 2  |-  ( A. x A. y ph  ->  A. y A. x ph )
2 ax-7 1436 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
31, 2impbii 125 1  |-  ( A. x A. y ph  <->  A. y A. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-7 1436
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  alrot3  1473  alrot4  1474  nfalt  1566  nfexd  1749  sbnf2  1969  sbcom2v  1973  sbalyz  1987  sbal1yz  1989  sbal2  2008  2eu4  2107  ralcomf  2627  gencbval  2774  unissb  3819  dfiin2g  3899  dftr5  4083  cotr  4985  cnvsym  4987  dffun2  5198  funcnveq  5251  fun11  5255
  Copyright terms: Public domain W3C validator