ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom Unicode version

Theorem alcom 1501
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom  |-  ( A. x A. y ph  <->  A. y A. x ph )

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1471 . 2  |-  ( A. x A. y ph  ->  A. y A. x ph )
2 ax-7 1471 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
31, 2impbii 126 1  |-  ( A. x A. y ph  <->  A. y A. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1471
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1508  alrot4  1509  nfalt  1601  nfexd  1784  sbnf2  2009  sbcom2v  2013  sbalyz  2027  sbal1yz  2029  sbal2  2048  2eu4  2147  ralcomf  2667  gencbval  2821  unissb  3880  dfiin2g  3960  dftr5  4145  cotr  5064  cnvsym  5066  dffun2  5281  funcnveq  5337  fun11  5341
  Copyright terms: Public domain W3C validator