ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom Unicode version

Theorem alcom 1492
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom  |-  ( A. x A. y ph  <->  A. y A. x ph )

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1462 . 2  |-  ( A. x A. y ph  ->  A. y A. x ph )
2 ax-7 1462 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
31, 2impbii 126 1  |-  ( A. x A. y ph  <->  A. y A. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1462
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1499  alrot4  1500  nfalt  1592  nfexd  1775  sbnf2  2000  sbcom2v  2004  sbalyz  2018  sbal1yz  2020  sbal2  2039  2eu4  2138  ralcomf  2658  gencbval  2812  unissb  3869  dfiin2g  3949  dftr5  4134  cotr  5051  cnvsym  5053  dffun2  5268  funcnveq  5321  fun11  5325
  Copyright terms: Public domain W3C validator