| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopick2 | Unicode version | ||
| Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1645. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mopick2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbmo1 2083 |
. . . 4
| |
| 2 | hbe1 1509 |
. . . 4
| |
| 3 | 1, 2 | hban 1561 |
. . 3
|
| 4 | mopick 2123 |
. . . . . 6
| |
| 5 | 4 | ancld 325 |
. . . . 5
|
| 6 | 5 | anim1d 336 |
. . . 4
|
| 7 | df-3an 982 |
. . . 4
| |
| 8 | 6, 7 | imbitrrdi 162 |
. . 3
|
| 9 | 3, 8 | eximdh 1625 |
. 2
|
| 10 | 9 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |