ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopick2 Unicode version

Theorem mopick2 2109
Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1631. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mopick2  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps )  /\  E. x
( ph  /\  ch )
)  ->  E. x
( ph  /\  ps  /\  ch ) )

Proof of Theorem mopick2
StepHypRef Expression
1 hbmo1 2064 . . . 4  |-  ( E* x ph  ->  A. x E* x ph )
2 hbe1 1495 . . . 4  |-  ( E. x ( ph  /\  ps )  ->  A. x E. x ( ph  /\  ps ) )
31, 2hban 1547 . . 3  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( E* x ph  /\ 
E. x ( ph  /\ 
ps ) ) )
4 mopick 2104 . . . . . 6  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
54ancld 325 . . . . 5  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ( ph  /\  ps ) ) )
65anim1d 336 . . . 4  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  (
( ph  /\  ch )  ->  ( ( ph  /\  ps )  /\  ch )
) )
7 df-3an 980 . . . 4  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
86, 7imbitrrdi 162 . . 3  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  (
( ph  /\  ch )  ->  ( ph  /\  ps  /\ 
ch ) ) )
93, 8eximdh 1611 . 2  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( E. x ( ph  /\  ch )  ->  E. x
( ph  /\  ps  /\  ch ) ) )
1093impia 1200 1  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps )  /\  E. x
( ph  /\  ch )
)  ->  E. x
( ph  /\  ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978   E.wex 1492   E*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator