| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mopick2 | Unicode version | ||
| Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1645. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| mopick2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbmo1 2083 | 
. . . 4
 | |
| 2 | hbe1 1509 | 
. . . 4
 | |
| 3 | 1, 2 | hban 1561 | 
. . 3
 | 
| 4 | mopick 2123 | 
. . . . . 6
 | |
| 5 | 4 | ancld 325 | 
. . . . 5
 | 
| 6 | 5 | anim1d 336 | 
. . . 4
 | 
| 7 | df-3an 982 | 
. . . 4
 | |
| 8 | 6, 7 | imbitrrdi 162 | 
. . 3
 | 
| 9 | 3, 8 | eximdh 1625 | 
. 2
 | 
| 10 | 9 | 3impia 1202 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |