ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupicka Unicode version

Theorem eupicka 2099
Description: Version of eupick 2098 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)

Proof of Theorem eupicka
StepHypRef Expression
1 hbeu1 2029 . . 3  |-  ( E! x ph  ->  A. x E! x ph )
2 hbe1 1488 . . 3  |-  ( E. x ( ph  /\  ps )  ->  A. x E. x ( ph  /\  ps ) )
31, 2hban 1540 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( E! x ph  /\ 
E. x ( ph  /\ 
ps ) ) )
4 eupick 2098 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
53, 4alrimih 1462 1  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  eupickbi  2101
  Copyright terms: Public domain W3C validator