ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupicka Unicode version

Theorem eupicka 2106
Description: Version of eupick 2105 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)

Proof of Theorem eupicka
StepHypRef Expression
1 hbeu1 2036 . . 3  |-  ( E! x ph  ->  A. x E! x ph )
2 hbe1 1495 . . 3  |-  ( E. x ( ph  /\  ps )  ->  A. x E. x ( ph  /\  ps ) )
31, 2hban 1547 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( E! x ph  /\ 
E. x ( ph  /\ 
ps ) ) )
4 eupick 2105 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
53, 4alrimih 1469 1  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1492   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  eupickbi  2108
  Copyright terms: Public domain W3C validator