ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupicka Unicode version

Theorem eupicka 2136
Description: Version of eupick 2135 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)

Proof of Theorem eupicka
StepHypRef Expression
1 hbeu1 2065 . . 3  |-  ( E! x ph  ->  A. x E! x ph )
2 hbe1 1519 . . 3  |-  ( E. x ( ph  /\  ps )  ->  A. x E. x ( ph  /\  ps ) )
31, 2hban 1571 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( E! x ph  /\ 
E. x ( ph  /\ 
ps ) ) )
4 eupick 2135 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
53, 4alrimih 1493 1  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1516   E!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  eupickbi  2138
  Copyright terms: Public domain W3C validator