| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cleqh | Unicode version | ||
| Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2372. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| cleqh.1 |
|
| cleqh.2 |
|
| Ref | Expression |
|---|---|
| cleqh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2198 |
. 2
| |
| 2 | ax-17 1548 |
. . . 4
| |
| 3 | dfbi2 388 |
. . . . 5
| |
| 4 | cleqh.1 |
. . . . . . 7
| |
| 5 | cleqh.2 |
. . . . . . 7
| |
| 6 | 4, 5 | hbim 1567 |
. . . . . 6
|
| 7 | 5, 4 | hbim 1567 |
. . . . . 6
|
| 8 | 6, 7 | hban 1569 |
. . . . 5
|
| 9 | 3, 8 | hbxfrbi 1494 |
. . . 4
|
| 10 | eleq1 2267 |
. . . . . 6
| |
| 11 | eleq1 2267 |
. . . . . 6
| |
| 12 | 10, 11 | bibi12d 235 |
. . . . 5
|
| 13 | 12 | biimpd 144 |
. . . 4
|
| 14 | 2, 9, 13 | cbv3h 1765 |
. . 3
|
| 15 | 12 | equcoms 1730 |
. . . . 5
|
| 16 | 15 | biimprd 158 |
. . . 4
|
| 17 | 9, 2, 16 | cbv3h 1765 |
. . 3
|
| 18 | 14, 17 | impbii 126 |
. 2
|
| 19 | 1, 18 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: abeq2 2313 |
| Copyright terms: Public domain | W3C validator |