ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswlk Unicode version

Theorem iswlk 16029
Description: Properties of a pair of functions to be/represent a walk. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v  |-  V  =  (Vtx `  G )
wksfval.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
iswlk  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) ) ) )
Distinct variable groups:    k, G    k, F    P, k
Allowed substitution hints:    U( k)    I(
k)    V( k)    W( k)    Z( k)

Proof of Theorem iswlk
Dummy variables  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4083 . . 3  |-  ( F (Walks `  G ) P 
<-> 
<. F ,  P >.  e.  (Walks `  G )
)
2 wksfval.v . . . . . 6  |-  V  =  (Vtx `  G )
3 wksfval.i . . . . . 6  |-  I  =  (iEdg `  G )
42, 3wksfval 16028 . . . . 5  |-  ( G  e.  W  ->  (Walks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) } )
543ad2ant1 1042 . . . 4  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  (Walks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) } )
65eleq2d 2299 . . 3  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( <. F ,  P >.  e.  (Walks `  G
)  <->  <. F ,  P >.  e.  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( `  f )
) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) } ) )
71, 6bitrid 192 . 2  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( F (Walks `  G ) P  <->  <. F ,  P >.  e.  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) } ) )
8 eleq1 2292 . . . . . 6  |-  ( f  =  F  ->  (
f  e. Word  dom  I  <->  F  e. Word  dom  I ) )
98adantr 276 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( f  e. Word  dom  I 
<->  F  e. Word  dom  I
) )
10 simpr 110 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  p  =  P )
11 fveq2 5626 . . . . . . . 8  |-  ( f  =  F  ->  ( `  f )  =  ( `  F ) )
1211oveq2d 6016 . . . . . . 7  |-  ( f  =  F  ->  (
0 ... ( `  f
) )  =  ( 0 ... ( `  F
) ) )
1312adantr 276 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  ( 0 ... ( `  f ) )  =  ( 0 ... ( `  F ) ) )
1410, 13feq12d 5462 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( p : ( 0 ... ( `  f
) ) --> V  <->  P :
( 0 ... ( `  F ) ) --> V ) )
1511oveq2d 6016 . . . . . . 7  |-  ( f  =  F  ->  (
0..^ ( `  f )
)  =  ( 0..^ ( `  F )
) )
1615adantr 276 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  ( 0..^ ( `  f
) )  =  ( 0..^ ( `  F
) ) )
17 fveq1 5625 . . . . . . . . 9  |-  ( p  =  P  ->  (
p `  k )  =  ( P `  k ) )
18 fveq1 5625 . . . . . . . . 9  |-  ( p  =  P  ->  (
p `  ( k  +  1 ) )  =  ( P `  ( k  +  1 ) ) )
1917, 18eqeq12d 2244 . . . . . . . 8  |-  ( p  =  P  ->  (
( p `  k
)  =  ( p `
 ( k  +  1 ) )  <->  ( P `  k )  =  ( P `  ( k  +  1 ) ) ) )
2019adantl 277 . . . . . . 7  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( p `  k )  =  ( p `  ( k  +  1 ) )  <-> 
( P `  k
)  =  ( P `
 ( k  +  1 ) ) ) )
21 fveq1 5625 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
2221fveq2d 5630 . . . . . . . 8  |-  ( f  =  F  ->  (
I `  ( f `  k ) )  =  ( I `  ( F `  k )
) )
2317sneqd 3679 . . . . . . . 8  |-  ( p  =  P  ->  { ( p `  k ) }  =  { ( P `  k ) } )
2422, 23eqeqan12d 2245 . . . . . . 7  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( I `  ( f `  k
) )  =  {
( p `  k
) }  <->  ( I `  ( F `  k
) )  =  {
( P `  k
) } ) )
2517, 18preq12d 3751 . . . . . . . . 9  |-  ( p  =  P  ->  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
2625adantl 277 . . . . . . . 8  |-  ( ( f  =  F  /\  p  =  P )  ->  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
2722adantr 276 . . . . . . . 8  |-  ( ( f  =  F  /\  p  =  P )  ->  ( I `  (
f `  k )
)  =  ( I `
 ( F `  k ) ) )
2826, 27sseq12d 3255 . . . . . . 7  |-  ( ( f  =  F  /\  p  =  P )  ->  ( { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) )  <->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
2920, 24, 28ifpbi123d 998 . . . . . 6  |-  ( ( f  =  F  /\  p  =  P )  ->  (if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) )  <-> if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) )
3016, 29raleqbidv 2744 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) )  <->  A. k  e.  (
0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) ) )
319, 14, 303anbi123d 1346 . . . 4  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) )  <->  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) ) )
3231opelopabga 4350 . . 3  |-  ( ( F  e.  U  /\  P  e.  Z )  ->  ( <. F ,  P >.  e.  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( `  f )
) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) }  <->  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) ) )
33323adant1 1039 . 2  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( <. F ,  P >.  e.  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( `  f )
) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) }  <->  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) ) )
347, 33bitrd 188 1  |-  ( ( G  e.  W  /\  F  e.  U  /\  P  e.  Z )  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  if-wif 983    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   {csn 3666   {cpr 3667   <.cop 3669   class class class wbr 4082   {copab 4143   dom cdm 4718   -->wf 5313   ` cfv 5317  (class class class)co 6000   0cc0 7995   1c1 7996    + caddc 7998   ...cfz 10200  ..^cfzo 10334  ♯chash 10992  Word cword 11066  Vtxcvtx 15807  iEdgciedg 15808  Walkscwlks 16024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-map 6795  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-wlks 16025
This theorem is referenced by:  wlkpropg  16030  iswlkg  16032  wlkvtxeledgg  16041
  Copyright terms: Public domain W3C validator