ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkres Unicode version

Theorem wlkres 16098
Description: The restriction  <. H ,  Q >. of a walk  <. F ,  P >. to an initial segment of the walk (of length  N) forms a walk on the subgraph  S consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
wlkres.v  |-  V  =  (Vtx `  G )
wlkres.i  |-  I  =  (iEdg `  G )
wlkres.d  |-  ( ph  ->  F (Walks `  G
) P )
wlkres.n  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
wlkres.s  |-  ( ph  ->  (Vtx `  S )  =  V )
wlkres.e  |-  ( ph  ->  (iEdg `  S )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
wlkres.h  |-  H  =  ( F prefix  N )
wlkres.q  |-  Q  =  ( P  |`  (
0 ... N ) )
Assertion
Ref Expression
wlkres  |-  ( ph  ->  H (Walks `  S
) Q )

Proof of Theorem wlkres
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkres.d . . . . 5  |-  ( ph  ->  F (Walks `  G
) P )
2 wlkres.i . . . . . 6  |-  I  =  (iEdg `  G )
32wlkf 16051 . . . . 5  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
41, 3syl 14 . . . 4  |-  ( ph  ->  F  e. Word  dom  I
)
5 wlkres.n . . . . 5  |-  ( ph  ->  N  e.  ( 0..^ ( `  F )
) )
6 elfzonn0 10394 . . . . 5  |-  ( N  e.  ( 0..^ ( `  F ) )  ->  N  e.  NN0 )
75, 6syl 14 . . . 4  |-  ( ph  ->  N  e.  NN0 )
8 pfxwrdsymbg 11230 . . . 4  |-  ( ( F  e. Word  dom  I  /\  N  e.  NN0 )  ->  ( F prefix  N
)  e. Word  ( F " ( 0..^ N ) ) )
94, 7, 8syl2anc 411 . . 3  |-  ( ph  ->  ( F prefix  N )  e. Word  ( F "
( 0..^ N ) ) )
10 wlkres.h . . . 4  |-  H  =  ( F prefix  N )
1110a1i 9 . . 3  |-  ( ph  ->  H  =  ( F prefix  N ) )
12 wlkres.e . . . . . 6  |-  ( ph  ->  (iEdg `  S )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
1312dmeqd 4925 . . . . 5  |-  ( ph  ->  dom  (iEdg `  S
)  =  dom  (
I  |`  ( F "
( 0..^ N ) ) ) )
14 wrdf 11085 . . . . . . 7  |-  ( F  e. Word  dom  I  ->  F : ( 0..^ ( `  F ) ) --> dom  I )
15 fimass 5489 . . . . . . 7  |-  ( F : ( 0..^ ( `  F ) ) --> dom  I  ->  ( F " ( 0..^ N ) )  C_  dom  I )
164, 14, 153syl 17 . . . . . 6  |-  ( ph  ->  ( F " (
0..^ N ) ) 
C_  dom  I )
17 ssdmres 5027 . . . . . 6  |-  ( ( F " ( 0..^ N ) )  C_  dom  I  <->  dom  ( I  |`  ( F " ( 0..^ N ) ) )  =  ( F "
( 0..^ N ) ) )
1816, 17sylib 122 . . . . 5  |-  ( ph  ->  dom  ( I  |`  ( F " ( 0..^ N ) ) )  =  ( F "
( 0..^ N ) ) )
1913, 18eqtrd 2262 . . . 4  |-  ( ph  ->  dom  (iEdg `  S
)  =  ( F
" ( 0..^ N ) ) )
20 wrdeq 11101 . . . 4  |-  ( dom  (iEdg `  S )  =  ( F "
( 0..^ N ) )  -> Word  dom  (iEdg `  S )  = Word  ( F " ( 0..^ N ) ) )
2119, 20syl 14 . . 3  |-  ( ph  -> Word 
dom  (iEdg `  S )  = Word  ( F " (
0..^ N ) ) )
229, 11, 213eltr4d 2313 . 2  |-  ( ph  ->  H  e. Word  dom  (iEdg `  S ) )
23 wlkres.v . . . . . . . 8  |-  V  =  (Vtx `  G )
2423wlkp 16055 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( `  F
) ) --> V )
251, 24syl 14 . . . . . 6  |-  ( ph  ->  P : ( 0 ... ( `  F
) ) --> V )
26 wlkres.s . . . . . . 7  |-  ( ph  ->  (Vtx `  S )  =  V )
2726feq3d 5462 . . . . . 6  |-  ( ph  ->  ( P : ( 0 ... ( `  F
) ) --> (Vtx `  S )  <->  P :
( 0 ... ( `  F ) ) --> V ) )
2825, 27mpbird 167 . . . . 5  |-  ( ph  ->  P : ( 0 ... ( `  F
) ) --> (Vtx `  S ) )
29 fzossfz 10370 . . . . . . 7  |-  ( 0..^ ( `  F )
)  C_  ( 0 ... ( `  F
) )
3029, 5sselid 3222 . . . . . 6  |-  ( ph  ->  N  e.  ( 0 ... ( `  F
) ) )
31 elfzuz3 10226 . . . . . 6  |-  ( N  e.  ( 0 ... ( `  F )
)  ->  ( `  F
)  e.  ( ZZ>= `  N ) )
32 fzss2 10268 . . . . . 6  |-  ( ( `  F )  e.  (
ZZ>= `  N )  -> 
( 0 ... N
)  C_  ( 0 ... ( `  F
) ) )
3330, 31, 323syl 17 . . . . 5  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... ( `  F
) ) )
3428, 33fssresd 5504 . . . 4  |-  ( ph  ->  ( P  |`  (
0 ... N ) ) : ( 0 ... N ) --> (Vtx `  S ) )
3510fveq2i 5632 . . . . . . 7  |-  ( `  H
)  =  ( `  ( F prefix  N ) )
36 pfxlen 11225 . . . . . . . 8  |-  ( ( F  e. Word  dom  I  /\  N  e.  (
0 ... ( `  F
) ) )  -> 
( `  ( F prefix  N
) )  =  N )
374, 30, 36syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( `  ( F prefix  N ) )  =  N )
3835, 37eqtrid 2274 . . . . . 6  |-  ( ph  ->  ( `  H )  =  N )
3938oveq2d 6023 . . . . 5  |-  ( ph  ->  ( 0 ... ( `  H ) )  =  ( 0 ... N
) )
4039feq2d 5461 . . . 4  |-  ( ph  ->  ( ( P  |`  ( 0 ... N
) ) : ( 0 ... ( `  H
) ) --> (Vtx `  S )  <->  ( P  |`  ( 0 ... N
) ) : ( 0 ... N ) --> (Vtx `  S )
) )
4134, 40mpbird 167 . . 3  |-  ( ph  ->  ( P  |`  (
0 ... N ) ) : ( 0 ... ( `  H )
) --> (Vtx `  S
) )
42 wlkres.q . . . 4  |-  Q  =  ( P  |`  (
0 ... N ) )
4342feq1i 5466 . . 3  |-  ( Q : ( 0 ... ( `  H )
) --> (Vtx `  S
)  <->  ( P  |`  ( 0 ... N
) ) : ( 0 ... ( `  H
) ) --> (Vtx `  S ) )
4441, 43sylibr 134 . 2  |-  ( ph  ->  Q : ( 0 ... ( `  H
) ) --> (Vtx `  S ) )
4523, 2wlkprop 16048 . . . . . 6  |-  ( F (Walks `  G ) P  ->  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) )
461, 45syl 14 . . . . 5  |-  ( ph  ->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) ) )
4746adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) ) )
4838oveq2d 6023 . . . . . . . . . . 11  |-  ( ph  ->  ( 0..^ ( `  H
) )  =  ( 0..^ N ) )
4948eleq2d 2299 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0..^ ( `  H
) )  <->  x  e.  ( 0..^ N ) ) )
5042fveq1i 5630 . . . . . . . . . . . . 13  |-  ( Q `
 x )  =  ( ( P  |`  ( 0 ... N
) ) `  x
)
51 fzossfz 10370 . . . . . . . . . . . . . . . 16  |-  ( 0..^ N )  C_  (
0 ... N )
5251a1i 9 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0..^ N ) 
C_  ( 0 ... N ) )
5352sselda 3224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0 ... N ) )
5453fvresd 5654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( P  |`  ( 0 ... N
) ) `  x
)  =  ( P `
 x ) )
5550, 54eqtr2id 2275 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( P `  x )  =  ( Q `  x ) )
5642fveq1i 5630 . . . . . . . . . . . . 13  |-  ( Q `
 ( x  + 
1 ) )  =  ( ( P  |`  ( 0 ... N
) ) `  (
x  +  1 ) )
57 fzofzp1 10441 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0..^ N )  ->  ( x  +  1 )  e.  ( 0 ... N
) )
5857adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( x  + 
1 )  e.  ( 0 ... N ) )
5958fvresd 5654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( P  |`  ( 0 ... N
) ) `  (
x  +  1 ) )  =  ( P `
 ( x  + 
1 ) ) )
6056, 59eqtr2id 2275 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )
6155, 60jca 306 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( P `
 x )  =  ( Q `  x
)  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1 ) ) ) )
6261ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0..^ N )  -> 
( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) ) ) )
6349, 62sylbid 150 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0..^ ( `  H
) )  ->  (
( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) ) ) )
6463imp 124 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) ) )
654ancli 323 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ph  /\  F  e. Word  dom  I ) )
6614ffund 5477 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  I  ->  Fun 
F )
6766adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e. Word  dom  I )  ->  Fun  F )
6867adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  ->  Fun  F )
69 fdm 5479 . . . . . . . . . . . . . . . . . 18  |-  ( F : ( 0..^ ( `  F ) ) --> dom  I  ->  dom  F  =  ( 0..^ ( `  F
) ) )
70 elfzouz2 10366 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( 0..^ ( `  F ) )  -> 
( `  F )  e.  ( ZZ>= `  N )
)
71 fzoss2 10378 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( `  F )  e.  (
ZZ>= `  N )  -> 
( 0..^ N ) 
C_  ( 0..^ ( `  F ) ) )
725, 70, 713syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 0..^ N ) 
C_  ( 0..^ ( `  F ) ) )
73 sseq2 3248 . . . . . . . . . . . . . . . . . . 19  |-  ( dom 
F  =  ( 0..^ ( `  F )
)  ->  ( (
0..^ N )  C_  dom  F  <->  ( 0..^ N )  C_  ( 0..^ ( `  F )
) ) )
7472, 73imbitrrid 156 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  =  ( 0..^ ( `  F )
)  ->  ( ph  ->  ( 0..^ N ) 
C_  dom  F )
)
7514, 69, 743syl 17 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  I  ->  (
ph  ->  ( 0..^ N )  C_  dom  F ) )
7675impcom 125 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e. Word  dom  I )  ->  (
0..^ N )  C_  dom  F )
7776adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  -> 
( 0..^ N ) 
C_  dom  F )
78 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
7968, 77, 78resfvresima 5880 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  -> 
( ( I  |`  ( F " ( 0..^ N ) ) ) `
 ( ( F  |`  ( 0..^ N ) ) `  x ) )  =  ( I `
 ( F `  x ) ) )
8065, 79sylan 283 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( I  |`  ( F " (
0..^ N ) ) ) `  ( ( F  |`  ( 0..^ N ) ) `  x ) )  =  ( I `  ( F `  x )
) )
8180eqcomd 2235 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( I `  ( F `  x ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `  (
( F  |`  (
0..^ N ) ) `
 x ) ) )
8281ex 115 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0..^ N )  -> 
( I `  ( F `  x )
)  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `  (
( F  |`  (
0..^ N ) ) `
 x ) ) ) )
8349, 82sylbid 150 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0..^ ( `  H
) )  ->  (
I `  ( F `  x ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `
 ( ( F  |`  ( 0..^ N ) ) `  x ) ) ) )
8483imp 124 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( I `  ( F `  x )
)  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `  (
( F  |`  (
0..^ N ) ) `
 x ) ) )
8512adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
(iEdg `  S )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
8610fveq1i 5630 . . . . . . . . . . 11  |-  ( H `
 x )  =  ( ( F prefix  N
) `  x )
874adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  ->  F  e. Word  dom  I )
8830adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  ->  N  e.  ( 0 ... ( `  F
) ) )
89 pfxres 11221 . . . . . . . . . . . . 13  |-  ( ( F  e. Word  dom  I  /\  N  e.  (
0 ... ( `  F
) ) )  -> 
( F prefix  N )  =  ( F  |`  ( 0..^ N ) ) )
9087, 88, 89syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( F prefix  N )  =  ( F  |`  ( 0..^ N ) ) )
9190fveq1d 5631 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( ( F prefix  N
) `  x )  =  ( ( F  |`  ( 0..^ N ) ) `  x ) )
9286, 91eqtrid 2274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( H `  x
)  =  ( ( F  |`  ( 0..^ N ) ) `  x ) )
9385, 92fveq12d 5636 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( (iEdg `  S
) `  ( H `  x ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `
 ( ( F  |`  ( 0..^ N ) ) `  x ) ) )
9484, 93eqtr4d 2265 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( I `  ( F `  x )
)  =  ( (iEdg `  S ) `  ( H `  x )
) )
9564, 94jca 306 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( ( ( P `
 x )  =  ( Q `  x
)  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) ) )
965, 70syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( `  F )  e.  ( ZZ>= `  N )
)
9738fveq2d 5633 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( `  H
) )  =  (
ZZ>= `  N ) )
9896, 97eleqtrrd 2309 . . . . . . . . . 10  |-  ( ph  ->  ( `  F )  e.  ( ZZ>= `  ( `  H
) ) )
99 fzoss2 10378 . . . . . . . . . 10  |-  ( ( `  F )  e.  (
ZZ>= `  ( `  H
) )  ->  (
0..^ ( `  H )
)  C_  ( 0..^ ( `  F )
) )
10098, 99syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 0..^ ( `  H
) )  C_  (
0..^ ( `  F )
) )
101100sselda 3224 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  ->  x  e.  ( 0..^ ( `  F )
) )
102 wkslem1 16041 . . . . . . . . 9  |-  ( k  =  x  ->  (if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <-> if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) ) ) )
103102rspcv 2903 . . . . . . . 8  |-  ( x  e.  ( 0..^ ( `  F ) )  -> 
( A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  -> if- ( ( P `
 x )  =  ( P `  (
x  +  1 ) ) ,  ( I `
 ( F `  x ) )  =  { ( P `  x ) } ,  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  C_  ( I `  ( F `  x
) ) ) ) )
104101, 103syl 14 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  -> if- ( ( P `
 x )  =  ( P `  (
x  +  1 ) ) ,  ( I `
 ( F `  x ) )  =  { ( P `  x ) } ,  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  C_  ( I `  ( F `  x
) ) ) ) )
105 eqeq12 2242 . . . . . . . . . 10  |-  ( ( ( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) )  -> 
( ( P `  x )  =  ( P `  ( x  +  1 ) )  <-> 
( Q `  x
)  =  ( Q `
 ( x  + 
1 ) ) ) )
106105adantr 276 . . . . . . . . 9  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( ( P `
 x )  =  ( P `  (
x  +  1 ) )  <->  ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ) )
107 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( I `  ( F `  x ) )  =  ( (iEdg `  S ) `  ( H `  x )
) )
108 sneq 3677 . . . . . . . . . . . 12  |-  ( ( P `  x )  =  ( Q `  x )  ->  { ( P `  x ) }  =  { ( Q `  x ) } )
109108adantr 276 . . . . . . . . . . 11  |-  ( ( ( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) )  ->  { ( P `  x ) }  =  { ( Q `  x ) } )
110109adantr 276 . . . . . . . . . 10  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  { ( P `
 x ) }  =  { ( Q `
 x ) } )
111107, 110eqeq12d 2244 . . . . . . . . 9  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( ( I `
 ( F `  x ) )  =  { ( P `  x ) }  <->  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ) )
112 preq12 3745 . . . . . . . . . . 11  |-  ( ( ( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) )  ->  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  =  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) } )
113112adantr 276 . . . . . . . . . 10  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  =  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } )
114113, 107sseq12d 3255 . . . . . . . . 9  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  C_  ( I `  ( F `  x )
)  <->  { ( Q `  x ) ,  ( Q `  ( x  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  x )
) ) )
115106, 111, 114ifpbi123d 998 . . . . . . . 8  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  (if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) )  <-> if- ( ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
116115biimpd 144 . . . . . . 7  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  (if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) )  -> if- ( ( Q `
 x )  =  ( Q `  (
x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
11795, 104, 116sylsyld 58 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> 
( A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  -> if- ( ( Q `
 x )  =  ( Q `  (
x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
118117com12 30 . . . . 5  |-  ( A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) )  -> 
( ( ph  /\  x  e.  ( 0..^ ( `  H )
) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) ) )
1191183ad2ant3 1044 . . . 4  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) )  ->  ( ( ph  /\  x  e.  ( 0..^ ( `  H )
) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) ) )
12047, 119mpcom 36 . . 3  |-  ( (
ph  /\  x  e.  ( 0..^ ( `  H
) ) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) )
121120ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  ( 0..^ ( `  H
) )if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) )
12223, 2, 1, 5, 26wlkreslem 16097 . . 3  |-  ( ph  ->  S  e.  _V )
123 eqid 2229 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
124 eqid 2229 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
125123, 124iswlkg 16050 . . 3  |-  ( S  e.  _V  ->  ( H (Walks `  S ) Q 
<->  ( H  e. Word  dom  (iEdg `  S )  /\  Q : ( 0 ... ( `  H )
) --> (Vtx `  S
)  /\  A. x  e.  ( 0..^ ( `  H
) )if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) ) ) )
126122, 125syl 14 . 2  |-  ( ph  ->  ( H (Walks `  S ) Q  <->  ( H  e. Word  dom  (iEdg `  S
)  /\  Q :
( 0 ... ( `  H ) ) --> (Vtx
`  S )  /\  A. x  e.  ( 0..^ ( `  H )
)if- ( ( Q `
 x )  =  ( Q `  (
x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) ) )
12722, 44, 121, 126mpbir3and 1204 1  |-  ( ph  ->  H (Walks `  S
) Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  if-wif 983    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   {csn 3666   {cpr 3667   class class class wbr 4083   dom cdm 4719    |` cres 4721   "cima 4722   Fun wfun 5312   -->wf 5314   ` cfv 5318  (class class class)co 6007   0cc0 8007   1c1 8008    + caddc 8010   NN0cn0 9377   ZZ>=cuz 9730   ...cfz 10212  ..^cfzo 10346  ♯chash 11005  Word cword 11079   prefix cpfx 11212  Vtxcvtx 15821  iEdgciedg 15822  Walkscwlks 16038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080  df-substr 11186  df-pfx 11213  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-wlks 16039
This theorem is referenced by:  trlres  16108
  Copyright terms: Public domain W3C validator