ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wkslem2 Unicode version

Theorem wkslem2 16027
Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wkslem2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  (if- ( ( P `  A )  =  ( P `  ( A  +  1
) ) ,  ( I `  ( F `
 A ) )  =  { ( P `
 A ) } ,  { ( P `
 A ) ,  ( P `  ( A  +  1 ) ) }  C_  (
I `  ( F `  A ) ) )  <-> if- ( ( P `  B )  =  ( P `  C ) ,  ( I `  ( F `  B ) )  =  { ( P `  B ) } ,  { ( P `  B ) ,  ( P `  C ) }  C_  ( I `  ( F `  B )
) ) ) )

Proof of Theorem wkslem2
StepHypRef Expression
1 fveq2 5626 . . . 4  |-  ( A  =  B  ->  ( P `  A )  =  ( P `  B ) )
21adantr 276 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( P `  A )  =  ( P `  B ) )
3 fveq2 5626 . . . 4  |-  ( ( A  +  1 )  =  C  ->  ( P `  ( A  +  1 ) )  =  ( P `  C ) )
43adantl 277 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( P `  ( A  +  1
) )  =  ( P `  C ) )
52, 4eqeq12d 2244 . 2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( ( P `
 A )  =  ( P `  ( A  +  1 ) )  <->  ( P `  B )  =  ( P `  C ) ) )
6 2fveq3 5631 . . . 4  |-  ( A  =  B  ->  (
I `  ( F `  A ) )  =  ( I `  ( F `  B )
) )
71sneqd 3679 . . . 4  |-  ( A  =  B  ->  { ( P `  A ) }  =  { ( P `  B ) } )
86, 7eqeq12d 2244 . . 3  |-  ( A  =  B  ->  (
( I `  ( F `  A )
)  =  { ( P `  A ) }  <->  ( I `  ( F `  B ) )  =  { ( P `  B ) } ) )
98adantr 276 . 2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( ( I `
 ( F `  A ) )  =  { ( P `  A ) }  <->  ( I `  ( F `  B
) )  =  {
( P `  B
) } ) )
102, 4preq12d 3751 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  { ( P `
 A ) ,  ( P `  ( A  +  1 ) ) }  =  {
( P `  B
) ,  ( P `
 C ) } )
116adantr 276 . . 3  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( I `  ( F `  A ) )  =  ( I `
 ( F `  B ) ) )
1210, 11sseq12d 3255 . 2  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  ( { ( P `  A ) ,  ( P `  ( A  +  1
) ) }  C_  ( I `  ( F `  A )
)  <->  { ( P `  B ) ,  ( P `  C ) }  C_  ( I `  ( F `  B
) ) ) )
135, 9, 12ifpbi123d 998 1  |-  ( ( A  =  B  /\  ( A  +  1
)  =  C )  ->  (if- ( ( P `  A )  =  ( P `  ( A  +  1
) ) ,  ( I `  ( F `
 A ) )  =  { ( P `
 A ) } ,  { ( P `
 A ) ,  ( P `  ( A  +  1 ) ) }  C_  (
I `  ( F `  A ) ) )  <-> if- ( ( P `  B )  =  ( P `  C ) ,  ( I `  ( F `  B ) )  =  { ( P `  B ) } ,  { ( P `  B ) ,  ( P `  C ) }  C_  ( I `  ( F `  B )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  if-wif 983    = wceq 1395    C_ wss 3197   {csn 3666   {cpr 3667   ` cfv 5317  (class class class)co 6000   1c1 7996    + caddc 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-ifp 984  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator