Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eueq3dc | Unicode version |
Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
eueq3dc.1 | |
eueq3dc.2 | |
eueq3dc.3 | |
eueq3dc.4 |
Ref | Expression |
---|---|
eueq3dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcor 930 | . 2 DECID DECID DECID | |
2 | df-dc 830 | . . 3 DECID | |
3 | eueq3dc.1 | . . . . . . 7 | |
4 | 3 | eueq1 2902 | . . . . . 6 |
5 | ibar 299 | . . . . . . . . 9 | |
6 | pm2.45 733 | . . . . . . . . . . . . 13 | |
7 | eueq3dc.4 | . . . . . . . . . . . . . . 15 | |
8 | 7 | imnani 686 | . . . . . . . . . . . . . 14 |
9 | 8 | con2i 622 | . . . . . . . . . . . . 13 |
10 | 6, 9 | jaoi 711 | . . . . . . . . . . . 12 |
11 | 10 | con2i 622 | . . . . . . . . . . 11 |
12 | 6 | con2i 622 | . . . . . . . . . . . . 13 |
13 | 12 | bianfd 943 | . . . . . . . . . . . 12 |
14 | 8 | bianfd 943 | . . . . . . . . . . . 12 |
15 | 13, 14 | orbi12d 788 | . . . . . . . . . . 11 |
16 | 11, 15 | mtbid 667 | . . . . . . . . . 10 |
17 | biorf 739 | . . . . . . . . . 10 | |
18 | 16, 17 | syl 14 | . . . . . . . . 9 |
19 | 5, 18 | bitrd 187 | . . . . . . . 8 |
20 | 3orrot 979 | . . . . . . . . 9 | |
21 | df-3or 974 | . . . . . . . . 9 | |
22 | 20, 21 | bitri 183 | . . . . . . . 8 |
23 | 19, 22 | bitr4di 197 | . . . . . . 7 |
24 | 23 | eubidv 2027 | . . . . . 6 |
25 | 4, 24 | mpbii 147 | . . . . 5 |
26 | eueq3dc.3 | . . . . . . 7 | |
27 | 26 | eueq1 2902 | . . . . . 6 |
28 | ibar 299 | . . . . . . . . 9 | |
29 | 8 | adantr 274 | . . . . . . . . . . . 12 |
30 | pm2.46 734 | . . . . . . . . . . . . 13 | |
31 | 30 | adantr 274 | . . . . . . . . . . . 12 |
32 | 29, 31 | jaoi 711 | . . . . . . . . . . 11 |
33 | 32 | con2i 622 | . . . . . . . . . 10 |
34 | biorf 739 | . . . . . . . . . 10 | |
35 | 33, 34 | syl 14 | . . . . . . . . 9 |
36 | 28, 35 | bitrd 187 | . . . . . . . 8 |
37 | df-3or 974 | . . . . . . . 8 | |
38 | 36, 37 | bitr4di 197 | . . . . . . 7 |
39 | 38 | eubidv 2027 | . . . . . 6 |
40 | 27, 39 | mpbii 147 | . . . . 5 |
41 | 25, 40 | jaoi 711 | . . . 4 |
42 | eueq3dc.2 | . . . . . 6 | |
43 | 42 | eueq1 2902 | . . . . 5 |
44 | ibar 299 | . . . . . . . 8 | |
45 | simpl 108 | . . . . . . . . . . 11 | |
46 | simpl 108 | . . . . . . . . . . 11 | |
47 | 45, 46 | orim12i 754 | . . . . . . . . . 10 |
48 | 47 | con3i 627 | . . . . . . . . 9 |
49 | biorf 739 | . . . . . . . . 9 | |
50 | 48, 49 | syl 14 | . . . . . . . 8 |
51 | 44, 50 | bitrd 187 | . . . . . . 7 |
52 | 3orcomb 982 | . . . . . . . 8 | |
53 | df-3or 974 | . . . . . . . 8 | |
54 | 52, 53 | bitri 183 | . . . . . . 7 |
55 | 51, 54 | bitr4di 197 | . . . . . 6 |
56 | 55 | eubidv 2027 | . . . . 5 |
57 | 43, 56 | mpbii 147 | . . . 4 |
58 | 41, 57 | jaoi 711 | . . 3 |
59 | 2, 58 | sylbi 120 | . 2 DECID |
60 | 1, 59 | syl6 33 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3o 972 wceq 1348 weu 2019 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: moeq3dc 2906 |
Copyright terms: Public domain | W3C validator |