| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eueq3dc | Unicode version | ||
| Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| eueq3dc.1 | 
 | 
| eueq3dc.2 | 
 | 
| eueq3dc.3 | 
 | 
| eueq3dc.4 | 
 | 
| Ref | Expression | 
|---|---|
| eueq3dc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dcor 937 | 
. 2
 | |
| 2 | df-dc 836 | 
. . 3
 | |
| 3 | eueq3dc.1 | 
. . . . . . 7
 | |
| 4 | 3 | eueq1 2936 | 
. . . . . 6
 | 
| 5 | ibar 301 | 
. . . . . . . . 9
 | |
| 6 | pm2.45 739 | 
. . . . . . . . . . . . 13
 | |
| 7 | eueq3dc.4 | 
. . . . . . . . . . . . . . 15
 | |
| 8 | 7 | imnani 692 | 
. . . . . . . . . . . . . 14
 | 
| 9 | 8 | con2i 628 | 
. . . . . . . . . . . . 13
 | 
| 10 | 6, 9 | jaoi 717 | 
. . . . . . . . . . . 12
 | 
| 11 | 10 | con2i 628 | 
. . . . . . . . . . 11
 | 
| 12 | 6 | con2i 628 | 
. . . . . . . . . . . . 13
 | 
| 13 | 12 | bianfd 950 | 
. . . . . . . . . . . 12
 | 
| 14 | 8 | bianfd 950 | 
. . . . . . . . . . . 12
 | 
| 15 | 13, 14 | orbi12d 794 | 
. . . . . . . . . . 11
 | 
| 16 | 11, 15 | mtbid 673 | 
. . . . . . . . . 10
 | 
| 17 | biorf 745 | 
. . . . . . . . . 10
 | |
| 18 | 16, 17 | syl 14 | 
. . . . . . . . 9
 | 
| 19 | 5, 18 | bitrd 188 | 
. . . . . . . 8
 | 
| 20 | 3orrot 986 | 
. . . . . . . . 9
 | |
| 21 | df-3or 981 | 
. . . . . . . . 9
 | |
| 22 | 20, 21 | bitri 184 | 
. . . . . . . 8
 | 
| 23 | 19, 22 | bitr4di 198 | 
. . . . . . 7
 | 
| 24 | 23 | eubidv 2053 | 
. . . . . 6
 | 
| 25 | 4, 24 | mpbii 148 | 
. . . . 5
 | 
| 26 | eueq3dc.3 | 
. . . . . . 7
 | |
| 27 | 26 | eueq1 2936 | 
. . . . . 6
 | 
| 28 | ibar 301 | 
. . . . . . . . 9
 | |
| 29 | 8 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 30 | pm2.46 740 | 
. . . . . . . . . . . . 13
 | |
| 31 | 30 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 32 | 29, 31 | jaoi 717 | 
. . . . . . . . . . 11
 | 
| 33 | 32 | con2i 628 | 
. . . . . . . . . 10
 | 
| 34 | biorf 745 | 
. . . . . . . . . 10
 | |
| 35 | 33, 34 | syl 14 | 
. . . . . . . . 9
 | 
| 36 | 28, 35 | bitrd 188 | 
. . . . . . . 8
 | 
| 37 | df-3or 981 | 
. . . . . . . 8
 | |
| 38 | 36, 37 | bitr4di 198 | 
. . . . . . 7
 | 
| 39 | 38 | eubidv 2053 | 
. . . . . 6
 | 
| 40 | 27, 39 | mpbii 148 | 
. . . . 5
 | 
| 41 | 25, 40 | jaoi 717 | 
. . . 4
 | 
| 42 | eueq3dc.2 | 
. . . . . 6
 | |
| 43 | 42 | eueq1 2936 | 
. . . . 5
 | 
| 44 | ibar 301 | 
. . . . . . . 8
 | |
| 45 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 46 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 47 | 45, 46 | orim12i 760 | 
. . . . . . . . . 10
 | 
| 48 | 47 | con3i 633 | 
. . . . . . . . 9
 | 
| 49 | biorf 745 | 
. . . . . . . . 9
 | |
| 50 | 48, 49 | syl 14 | 
. . . . . . . 8
 | 
| 51 | 44, 50 | bitrd 188 | 
. . . . . . 7
 | 
| 52 | 3orcomb 989 | 
. . . . . . . 8
 | |
| 53 | df-3or 981 | 
. . . . . . . 8
 | |
| 54 | 52, 53 | bitri 184 | 
. . . . . . 7
 | 
| 55 | 51, 54 | bitr4di 198 | 
. . . . . 6
 | 
| 56 | 55 | eubidv 2053 | 
. . . . 5
 | 
| 57 | 43, 56 | mpbii 148 | 
. . . 4
 | 
| 58 | 41, 57 | jaoi 717 | 
. . 3
 | 
| 59 | 2, 58 | sylbi 121 | 
. 2
 | 
| 60 | 1, 59 | syl6 33 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: moeq3dc 2940 | 
| Copyright terms: Public domain | W3C validator |