Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndcel | Unicode version |
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
Ref | Expression |
---|---|
nndcel | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri3or 6472 | . . 3 | |
2 | orc 707 | . . . 4 | |
3 | elirr 4525 | . . . . . 6 | |
4 | eleq1 2233 | . . . . . 6 | |
5 | 3, 4 | mtbiri 670 | . . . . 5 |
6 | 5 | olcd 729 | . . . 4 |
7 | en2lp 4538 | . . . . . 6 | |
8 | 7 | imnani 686 | . . . . 5 |
9 | 8 | olcd 729 | . . . 4 |
10 | 2, 6, 9 | 3jaoi 1298 | . . 3 |
11 | 1, 10 | syl 14 | . 2 |
12 | df-dc 830 | . 2 DECID | |
13 | 11, 12 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 |
This theorem is referenced by: enumctlemm 7091 nnnninf 7102 nnnninfeq 7104 ltdcpi 7285 |
Copyright terms: Public domain | W3C validator |