ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndcel Unicode version

Theorem nndcel 6609
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
Assertion
Ref Expression
nndcel  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  e.  B )

Proof of Theorem nndcel
StepHypRef Expression
1 nntri3or 6602 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
2 orc 714 . . . 4  |-  ( A  e.  B  ->  ( A  e.  B  \/  -.  A  e.  B
) )
3 elirr 4607 . . . . . 6  |-  -.  B  e.  B
4 eleq1 2270 . . . . . 6  |-  ( A  =  B  ->  ( A  e.  B  <->  B  e.  B ) )
53, 4mtbiri 677 . . . . 5  |-  ( A  =  B  ->  -.  A  e.  B )
65olcd 736 . . . 4  |-  ( A  =  B  ->  ( A  e.  B  \/  -.  A  e.  B
) )
7 en2lp 4620 . . . . . 6  |-  -.  ( B  e.  A  /\  A  e.  B )
87imnani 693 . . . . 5  |-  ( B  e.  A  ->  -.  A  e.  B )
98olcd 736 . . . 4  |-  ( B  e.  A  ->  ( A  e.  B  \/  -.  A  e.  B
) )
102, 6, 93jaoi 1316 . . 3  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( A  e.  B  \/  -.  A  e.  B
) )
111, 10syl 14 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  -.  A  e.  B
) )
12 df-dc 837 . 2  |-  (DECID  A  e.  B  <->  ( A  e.  B  \/  -.  A  e.  B ) )
1311, 12sylibr 134 1  |-  ( ( A  e.  om  /\  B  e.  om )  -> DECID  A  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2178   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657
This theorem is referenced by:  enumctlemm  7242  nnnninf  7254  nnnninfeq  7256  ltdcpi  7471  nninfinf  10625  nninfctlemfo  12476
  Copyright terms: Public domain W3C validator