| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nndcel | Unicode version | ||
| Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) | 
| Ref | Expression | 
|---|---|
| nndcel | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nntri3or 6551 | 
. . 3
 | |
| 2 | orc 713 | 
. . . 4
 | |
| 3 | elirr 4577 | 
. . . . . 6
 | |
| 4 | eleq1 2259 | 
. . . . . 6
 | |
| 5 | 3, 4 | mtbiri 676 | 
. . . . 5
 | 
| 6 | 5 | olcd 735 | 
. . . 4
 | 
| 7 | en2lp 4590 | 
. . . . . 6
 | |
| 8 | 7 | imnani 692 | 
. . . . 5
 | 
| 9 | 8 | olcd 735 | 
. . . 4
 | 
| 10 | 2, 6, 9 | 3jaoi 1314 | 
. . 3
 | 
| 11 | 1, 10 | syl 14 | 
. 2
 | 
| 12 | df-dc 836 | 
. 2
 | |
| 13 | 11, 12 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: enumctlemm 7180 nnnninf 7192 nnnninfeq 7194 ltdcpi 7390 nninfinf 10535 nninfctlemfo 12207 | 
| Copyright terms: Public domain | W3C validator |