Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndcel | Unicode version |
Description: Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.) |
Ref | Expression |
---|---|
nndcel | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri3or 6429 | . . 3 | |
2 | orc 702 | . . . 4 | |
3 | elirr 4494 | . . . . . 6 | |
4 | eleq1 2217 | . . . . . 6 | |
5 | 3, 4 | mtbiri 665 | . . . . 5 |
6 | 5 | olcd 724 | . . . 4 |
7 | en2lp 4507 | . . . . . 6 | |
8 | 7 | imnani 681 | . . . . 5 |
9 | 8 | olcd 724 | . . . 4 |
10 | 2, 6, 9 | 3jaoi 1282 | . . 3 |
11 | 1, 10 | syl 14 | . 2 |
12 | df-dc 821 | . 2 DECID | |
13 | 11, 12 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 w3o 962 wceq 1332 wcel 2125 com 4543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-uni 3769 df-int 3804 df-tr 4059 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 |
This theorem is referenced by: enumctlemm 7044 nnnninf 7054 ltdcpi 7222 nninfalllemn 13520 |
Copyright terms: Public domain | W3C validator |