ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruex Unicode version

Theorem dtruex 4559
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4192 can also be summarized as "at least two sets exist", the difference is that dtruarb 4192 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific  y, we can construct a set  x which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtruex  |-  E. x  -.  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtruex
StepHypRef Expression
1 vex 2741 . . . . 5  |-  y  e. 
_V
21snex 4186 . . . 4  |-  { y }  e.  _V
32isseti 2746 . . 3  |-  E. x  x  =  { y }
4 elirrv 4548 . . . . . . 7  |-  -.  y  e.  y
5 vsnid 3625 . . . . . . . 8  |-  y  e. 
{ y }
6 eleq2 2241 . . . . . . . 8  |-  ( y  =  { y }  ->  ( y  e.  y  <->  y  e.  {
y } ) )
75, 6mpbiri 168 . . . . . . 7  |-  ( y  =  { y }  ->  y  e.  y )
84, 7mto 662 . . . . . 6  |-  -.  y  =  { y }
9 eqtr 2195 . . . . . 6  |-  ( ( y  =  x  /\  x  =  { y } )  ->  y  =  { y } )
108, 9mto 662 . . . . 5  |-  -.  (
y  =  x  /\  x  =  { y } )
11 ancom 266 . . . . 5  |-  ( ( y  =  x  /\  x  =  { y } )  <->  ( x  =  { y }  /\  y  =  x )
)
1210, 11mtbi 670 . . . 4  |-  -.  (
x  =  { y }  /\  y  =  x )
1312imnani 691 . . 3  |-  ( x  =  { y }  ->  -.  y  =  x )
143, 13eximii 1602 . 2  |-  E. x  -.  y  =  x
15 equcom 1706 . . . 4  |-  ( y  =  x  <->  x  =  y )
1615notbii 668 . . 3  |-  ( -.  y  =  x  <->  -.  x  =  y )
1716exbii 1605 . 2  |-  ( E. x  -.  y  =  x  <->  E. x  -.  x  =  y )
1814, 17mpbi 145 1  |-  E. x  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599
This theorem is referenced by:  dtru  4560  eunex  4561  brprcneu  5509
  Copyright terms: Public domain W3C validator