| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtruex | Unicode version | ||
| Description: At least two sets exist
(or in terms of first-order logic, the universe
of discourse has two or more objects). Although dtruarb 4234 can also be
summarized as "at least two sets exist", the difference is
that
dtruarb 4234 shows the existence of two sets which are not
equal to each
other, but this theorem says that given a specific |
| Ref | Expression |
|---|---|
| dtruex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 |
. . . . 5
| |
| 2 | 1 | snex 4228 |
. . . 4
|
| 3 | 2 | isseti 2779 |
. . 3
|
| 4 | elirrv 4595 |
. . . . . . 7
| |
| 5 | vsnid 3664 |
. . . . . . . 8
| |
| 6 | eleq2 2268 |
. . . . . . . 8
| |
| 7 | 5, 6 | mpbiri 168 |
. . . . . . 7
|
| 8 | 4, 7 | mto 663 |
. . . . . 6
|
| 9 | eqtr 2222 |
. . . . . 6
| |
| 10 | 8, 9 | mto 663 |
. . . . 5
|
| 11 | ancom 266 |
. . . . 5
| |
| 12 | 10, 11 | mtbi 671 |
. . . 4
|
| 13 | 12 | imnani 692 |
. . 3
|
| 14 | 3, 13 | eximii 1624 |
. 2
|
| 15 | equcom 1728 |
. . . 4
| |
| 16 | 15 | notbii 669 |
. . 3
|
| 17 | 16 | exbii 1627 |
. 2
|
| 18 | 14, 17 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 |
| This theorem is referenced by: dtru 4607 eunex 4608 brprcneu 5568 |
| Copyright terms: Public domain | W3C validator |