| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtruex | Unicode version | ||
| Description: At least two sets exist
(or in terms of first-order logic, the universe
of discourse has two or more objects). Although dtruarb 4251 can also be
summarized as "at least two sets exist", the difference is
that
dtruarb 4251 shows the existence of two sets which are not
equal to each
other, but this theorem says that given a specific |
| Ref | Expression |
|---|---|
| dtruex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . 5
| |
| 2 | 1 | snex 4245 |
. . . 4
|
| 3 | 2 | isseti 2785 |
. . 3
|
| 4 | elirrv 4614 |
. . . . . . 7
| |
| 5 | vsnid 3675 |
. . . . . . . 8
| |
| 6 | eleq2 2271 |
. . . . . . . 8
| |
| 7 | 5, 6 | mpbiri 168 |
. . . . . . 7
|
| 8 | 4, 7 | mto 664 |
. . . . . 6
|
| 9 | eqtr 2225 |
. . . . . 6
| |
| 10 | 8, 9 | mto 664 |
. . . . 5
|
| 11 | ancom 266 |
. . . . 5
| |
| 12 | 10, 11 | mtbi 672 |
. . . 4
|
| 13 | 12 | imnani 693 |
. . 3
|
| 14 | 3, 13 | eximii 1626 |
. 2
|
| 15 | equcom 1730 |
. . . 4
| |
| 16 | 15 | notbii 670 |
. . 3
|
| 17 | 16 | exbii 1629 |
. 2
|
| 18 | 14, 17 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: dtru 4626 eunex 4627 brprcneu 5592 |
| Copyright terms: Public domain | W3C validator |