ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruex Unicode version

Theorem dtruex 4625
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 4251 can also be summarized as "at least two sets exist", the difference is that dtruarb 4251 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific  y, we can construct a set  x which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtruex  |-  E. x  -.  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtruex
StepHypRef Expression
1 vex 2779 . . . . 5  |-  y  e. 
_V
21snex 4245 . . . 4  |-  { y }  e.  _V
32isseti 2785 . . 3  |-  E. x  x  =  { y }
4 elirrv 4614 . . . . . . 7  |-  -.  y  e.  y
5 vsnid 3675 . . . . . . . 8  |-  y  e. 
{ y }
6 eleq2 2271 . . . . . . . 8  |-  ( y  =  { y }  ->  ( y  e.  y  <->  y  e.  {
y } ) )
75, 6mpbiri 168 . . . . . . 7  |-  ( y  =  { y }  ->  y  e.  y )
84, 7mto 664 . . . . . 6  |-  -.  y  =  { y }
9 eqtr 2225 . . . . . 6  |-  ( ( y  =  x  /\  x  =  { y } )  ->  y  =  { y } )
108, 9mto 664 . . . . 5  |-  -.  (
y  =  x  /\  x  =  { y } )
11 ancom 266 . . . . 5  |-  ( ( y  =  x  /\  x  =  { y } )  <->  ( x  =  { y }  /\  y  =  x )
)
1210, 11mtbi 672 . . . 4  |-  -.  (
x  =  { y }  /\  y  =  x )
1312imnani 693 . . 3  |-  ( x  =  { y }  ->  -.  y  =  x )
143, 13eximii 1626 . 2  |-  E. x  -.  y  =  x
15 equcom 1730 . . . 4  |-  ( y  =  x  <->  x  =  y )
1615notbii 670 . . 3  |-  ( -.  y  =  x  <->  -.  x  =  y )
1716exbii 1629 . 2  |-  ( E. x  -.  y  =  x  <->  E. x  -.  x  =  y )
1814, 17mpbi 145 1  |-  E. x  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649
This theorem is referenced by:  dtru  4626  eunex  4627  brprcneu  5592
  Copyright terms: Public domain W3C validator