ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri2 Unicode version

Theorem nntri2 6495
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )

Proof of Theorem nntri2
StepHypRef Expression
1 elirr 4541 . . . . 5  |-  -.  A  e.  A
2 eleq2 2241 . . . . 5  |-  ( A  =  B  ->  ( A  e.  A  <->  A  e.  B ) )
31, 2mtbii 674 . . . 4  |-  ( A  =  B  ->  -.  A  e.  B )
43con2i 627 . . 3  |-  ( A  e.  B  ->  -.  A  =  B )
5 en2lp 4554 . . . 4  |-  -.  ( A  e.  B  /\  B  e.  A )
65imnani 691 . . 3  |-  ( A  e.  B  ->  -.  B  e.  A )
7 ioran 752 . . 3  |-  ( -.  ( A  =  B  \/  B  e.  A
)  <->  ( -.  A  =  B  /\  -.  B  e.  A ) )
84, 6, 7sylanbrc 417 . 2  |-  ( A  e.  B  ->  -.  ( A  =  B  \/  B  e.  A
) )
9 nntri3or 6494 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
10 3orass 981 . . . . 5  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( A  e.  B  \/  ( A  =  B  \/  B  e.  A
) ) )
119, 10sylib 122 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  ( A  =  B  \/  B  e.  A
) ) )
1211orcomd 729 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  =  B  \/  B  e.  A )  \/  A  e.  B ) )
1312ord 724 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  ( A  =  B  \/  B  e.  A )  ->  A  e.  B ) )
148, 13impbid2 143 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   omcom 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591
This theorem is referenced by:  nnaord  6510  nnmord  6518  pitric  7320
  Copyright terms: Public domain W3C validator