ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  canth Unicode version

Theorem canth 5831
Description: No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1500 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
Hypothesis
Ref Expression
canth.1  |-  A  e. 
_V
Assertion
Ref Expression
canth  |-  -.  F : A -onto-> ~P A

Proof of Theorem canth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4  |-  A  e. 
_V
2 ssrab2 3242 . . . 4  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A
31, 2elpwi2 4160 . . 3  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A
4 forn 5443 . . 3  |-  ( F : A -onto-> ~P A  ->  ran  F  =  ~P A )
53, 4eleqtrrid 2267 . 2  |-  ( F : A -onto-> ~P A  ->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F
)
6 pm5.19 706 . . . . . 6  |-  -.  (
y  e.  ( F `
 y )  <->  -.  y  e.  ( F `  y
) )
7 eleq2 2241 . . . . . . 7  |-  ( ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) }  ->  (
y  e.  ( F `
 y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
8 id 19 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
9 fveq2 5517 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
108, 9eleq12d 2248 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( F `
 x )  <->  y  e.  ( F `  y ) ) )
1110notbid 667 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  x  e.  ( F `  x )  <->  -.  y  e.  ( F `
 y ) ) )
1211elrab3 2896 . . . . . . 7  |-  ( y  e.  A  ->  (
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) }  <->  -.  y  e.  ( F `  y
) ) )
137, 12sylan9bbr 463 . . . . . 6  |-  ( ( y  e.  A  /\  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )  -> 
( y  e.  ( F `  y )  <->  -.  y  e.  ( F `  y )
) )
146, 13mto 662 . . . . 5  |-  -.  (
y  e.  A  /\  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1514imnani 691 . . . 4  |-  ( y  e.  A  ->  -.  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1615nrex 2569 . . 3  |-  -.  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x ) }
17 fofn 5442 . . . 4  |-  ( F : A -onto-> ~P A  ->  F  Fn  A )
18 fvelrnb 5565 . . . 4  |-  ( F  Fn  A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
1917, 18syl 14 . . 3  |-  ( F : A -onto-> ~P A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2016, 19mtbiri 675 . 2  |-  ( F : A -onto-> ~P A  ->  -.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F )
215, 20pm2.65i 639 1  |-  -.  F : A -onto-> ~P A
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   {crab 2459   _Vcvv 2739   ~Pcpw 3577   ran crn 4629    Fn wfn 5213   -onto->wfo 5216   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator