ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  canth Unicode version

Theorem canth 5875
Description: No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1514 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
Hypothesis
Ref Expression
canth.1  |-  A  e. 
_V
Assertion
Ref Expression
canth  |-  -.  F : A -onto-> ~P A

Proof of Theorem canth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4  |-  A  e. 
_V
2 ssrab2 3268 . . . 4  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A
31, 2elpwi2 4191 . . 3  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A
4 forn 5483 . . 3  |-  ( F : A -onto-> ~P A  ->  ran  F  =  ~P A )
53, 4eleqtrrid 2286 . 2  |-  ( F : A -onto-> ~P A  ->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F
)
6 pm5.19 707 . . . . . 6  |-  -.  (
y  e.  ( F `
 y )  <->  -.  y  e.  ( F `  y
) )
7 eleq2 2260 . . . . . . 7  |-  ( ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) }  ->  (
y  e.  ( F `
 y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
8 id 19 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
9 fveq2 5558 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
108, 9eleq12d 2267 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( F `
 x )  <->  y  e.  ( F `  y ) ) )
1110notbid 668 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  x  e.  ( F `  x )  <->  -.  y  e.  ( F `
 y ) ) )
1211elrab3 2921 . . . . . . 7  |-  ( y  e.  A  ->  (
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) }  <->  -.  y  e.  ( F `  y
) ) )
137, 12sylan9bbr 463 . . . . . 6  |-  ( ( y  e.  A  /\  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )  -> 
( y  e.  ( F `  y )  <->  -.  y  e.  ( F `  y )
) )
146, 13mto 663 . . . . 5  |-  -.  (
y  e.  A  /\  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1514imnani 692 . . . 4  |-  ( y  e.  A  ->  -.  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1615nrex 2589 . . 3  |-  -.  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x ) }
17 fofn 5482 . . . 4  |-  ( F : A -onto-> ~P A  ->  F  Fn  A )
18 fvelrnb 5608 . . . 4  |-  ( F  Fn  A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
1917, 18syl 14 . . 3  |-  ( F : A -onto-> ~P A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2016, 19mtbiri 676 . 2  |-  ( F : A -onto-> ~P A  ->  -.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F )
215, 20pm2.65i 640 1  |-  -.  F : A -onto-> ~P A
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   {crab 2479   _Vcvv 2763   ~Pcpw 3605   ran crn 4664    Fn wfn 5253   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator