ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  canth Unicode version

Theorem canth 5842
Description: No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1510 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
Hypothesis
Ref Expression
canth.1  |-  A  e. 
_V
Assertion
Ref Expression
canth  |-  -.  F : A -onto-> ~P A

Proof of Theorem canth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4  |-  A  e. 
_V
2 ssrab2 3252 . . . 4  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  C_  A
31, 2elpwi2 4170 . . 3  |-  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ~P A
4 forn 5453 . . 3  |-  ( F : A -onto-> ~P A  ->  ran  F  =  ~P A )
53, 4eleqtrrid 2277 . 2  |-  ( F : A -onto-> ~P A  ->  { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F
)
6 pm5.19 707 . . . . . 6  |-  -.  (
y  e.  ( F `
 y )  <->  -.  y  e.  ( F `  y
) )
7 eleq2 2251 . . . . . . 7  |-  ( ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) }  ->  (
y  e.  ( F `
 y )  <->  y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) } ) )
8 id 19 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
9 fveq2 5527 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
108, 9eleq12d 2258 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( F `
 x )  <->  y  e.  ( F `  y ) ) )
1110notbid 668 . . . . . . . 8  |-  ( x  =  y  ->  ( -.  x  e.  ( F `  x )  <->  -.  y  e.  ( F `
 y ) ) )
1211elrab3 2906 . . . . . . 7  |-  ( y  e.  A  ->  (
y  e.  { x  e.  A  |  -.  x  e.  ( F `  x ) }  <->  -.  y  e.  ( F `  y
) ) )
137, 12sylan9bbr 463 . . . . . 6  |-  ( ( y  e.  A  /\  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )  -> 
( y  e.  ( F `  y )  <->  -.  y  e.  ( F `  y )
) )
146, 13mto 663 . . . . 5  |-  -.  (
y  e.  A  /\  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1514imnani 692 . . . 4  |-  ( y  e.  A  ->  -.  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } )
1615nrex 2579 . . 3  |-  -.  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x ) }
17 fofn 5452 . . . 4  |-  ( F : A -onto-> ~P A  ->  F  Fn  A )
18 fvelrnb 5576 . . . 4  |-  ( F  Fn  A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x ) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
1917, 18syl 14 . . 3  |-  ( F : A -onto-> ~P A  ->  ( { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  { x  e.  A  |  -.  x  e.  ( F `  x
) } ) )
2016, 19mtbiri 676 . 2  |-  ( F : A -onto-> ~P A  ->  -.  { x  e.  A  |  -.  x  e.  ( F `  x
) }  e.  ran  F )
215, 20pm2.65i 640 1  |-  -.  F : A -onto-> ~P A
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   E.wrex 2466   {crab 2469   _Vcvv 2749   ~Pcpw 3587   ran crn 4639    Fn wfn 5223   -onto->wfo 5226   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fo 5234  df-fv 5236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator