![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpjaod |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaod.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | jaod.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | jaod 718 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ifbothdc 3591 opth1 4266 onsucelsucexmidlem 4562 reldmtpos 6308 dftpos4 6318 nnm00 6585 xpfi 6988 omp1eomlem 7155 ctmlemr 7169 ctssdclemn0 7171 finomni 7201 indpi 7404 enq0tr 7496 prarloclem3step 7558 distrlem4prl 7646 distrlem4pru 7647 lelttr 8110 nn1suc 9003 nnsub 9023 nn0lt2 9401 uzin 9628 xrlelttr 9875 xlesubadd 9952 fzfig 10504 seq3id 10599 seq3z 10602 faclbnd 10815 facavg 10820 bcval5 10837 hashfzo 10896 iserex 11485 fsum3cvg 11524 fsumf1o 11536 fisumss 11538 fsumcl2lem 11544 fsumadd 11552 fsummulc2 11594 isumsplit 11637 fprodf1o 11734 prodssdc 11735 fprodssdc 11736 fprodmul 11737 absdvdsb 11955 dvdsabsb 11956 dvdsabseq 11992 m1exp1 12045 flodddiv4 12078 gcdaddm 12124 gcdabs1 12129 lcmdvds 12220 prmind2 12261 rpexp 12294 fermltl 12375 pcxnn0cl 12451 pcxcl 12452 pcabs 12467 pcmpt 12484 pockthg 12498 mulgnn0ass 13231 lgseisenlem2 15228 2lgslem1c 15247 trilpolemcl 15597 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |