| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| jaod.3 |
|
| Ref | Expression |
|---|---|
| mpjaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 |
. 2
| |
| 2 | jaod.1 |
. . 3
| |
| 3 | jaod.2 |
. . 3
| |
| 4 | 2, 3 | jaod 719 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3610 opth1 4288 onsucelsucexmidlem 4585 reldmtpos 6352 dftpos4 6362 nnm00 6629 xpfi 7044 omp1eomlem 7211 ctmlemr 7225 ctssdclemn0 7227 finomni 7257 indpi 7475 enq0tr 7567 prarloclem3step 7629 distrlem4prl 7717 distrlem4pru 7718 lelttr 8181 nn1suc 9075 nnsub 9095 nn0lt2 9474 uzin 9701 xrlelttr 9948 xlesubadd 10025 fzfig 10597 seq3id 10692 seq3z 10695 faclbnd 10908 facavg 10913 bcval5 10930 hashfzo 10989 iserex 11725 fsum3cvg 11764 fsumf1o 11776 fisumss 11778 fsumcl2lem 11784 fsumadd 11792 fsummulc2 11834 isumsplit 11877 fprodf1o 11974 prodssdc 11975 fprodssdc 11976 fprodmul 11977 absdvdsb 12195 dvdsabsb 12196 dvdsabseq 12233 m1exp1 12287 flodddiv4 12322 gcdaddm 12380 gcdabs1 12385 lcmdvds 12476 prmind2 12517 rpexp 12550 fermltl 12631 pcxnn0cl 12708 pcxcl 12709 pcabs 12724 pcmpt 12741 pockthg 12755 mulgnn0ass 13569 lgseisenlem2 15623 2lgslem1c 15642 trilpolemcl 16117 trilpolemlt1 16121 |
| Copyright terms: Public domain | W3C validator |