Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | |
jaod.2 | |
jaod.3 |
Ref | Expression |
---|---|
mpjaod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 | |
2 | jaod.1 | . . 3 | |
3 | jaod.2 | . . 3 | |
4 | 2, 3 | jaod 707 | . 2 |
5 | 1, 4 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ifbothdc 3552 opth1 4214 onsucelsucexmidlem 4506 reldmtpos 6221 dftpos4 6231 nnm00 6497 xpfi 6895 omp1eomlem 7059 ctmlemr 7073 ctssdclemn0 7075 finomni 7104 indpi 7283 enq0tr 7375 prarloclem3step 7437 distrlem4prl 7525 distrlem4pru 7526 lelttr 7987 nn1suc 8876 nnsub 8896 nn0lt2 9272 uzin 9498 xrlelttr 9742 xlesubadd 9819 fzfig 10365 seq3id 10443 seq3z 10446 faclbnd 10654 facavg 10659 bcval5 10676 hashfzo 10735 iserex 11280 fsum3cvg 11319 fsumf1o 11331 fisumss 11333 fsumcl2lem 11339 fsumadd 11347 fsummulc2 11389 isumsplit 11432 fprodf1o 11529 prodssdc 11530 fprodssdc 11531 fprodmul 11532 absdvdsb 11749 dvdsabsb 11750 dvdsabseq 11785 m1exp1 11838 flodddiv4 11871 gcdaddm 11917 gcdabs1 11922 lcmdvds 12011 prmind2 12052 rpexp 12085 fermltl 12166 pcxnn0cl 12242 pcxcl 12243 pcabs 12257 pcmpt 12273 pockthg 12287 trilpolemcl 13916 trilpolemlt1 13920 |
Copyright terms: Public domain | W3C validator |