| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) | 
| Ref | Expression | 
|---|---|
| jaod.1 | 
 | 
| jaod.2 | 
 | 
| jaod.3 | 
 | 
| Ref | Expression | 
|---|---|
| mpjaod | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jaod.3 | 
. 2
 | |
| 2 | jaod.1 | 
. . 3
 | |
| 3 | jaod.2 | 
. . 3
 | |
| 4 | 2, 3 | jaod 718 | 
. 2
 | 
| 5 | 1, 4 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: ifbothdc 3594 opth1 4269 onsucelsucexmidlem 4565 reldmtpos 6311 dftpos4 6321 nnm00 6588 xpfi 6993 omp1eomlem 7160 ctmlemr 7174 ctssdclemn0 7176 finomni 7206 indpi 7409 enq0tr 7501 prarloclem3step 7563 distrlem4prl 7651 distrlem4pru 7652 lelttr 8115 nn1suc 9009 nnsub 9029 nn0lt2 9407 uzin 9634 xrlelttr 9881 xlesubadd 9958 fzfig 10522 seq3id 10617 seq3z 10620 faclbnd 10833 facavg 10838 bcval5 10855 hashfzo 10914 iserex 11504 fsum3cvg 11543 fsumf1o 11555 fisumss 11557 fsumcl2lem 11563 fsumadd 11571 fsummulc2 11613 isumsplit 11656 fprodf1o 11753 prodssdc 11754 fprodssdc 11755 fprodmul 11756 absdvdsb 11974 dvdsabsb 11975 dvdsabseq 12012 m1exp1 12066 flodddiv4 12101 gcdaddm 12151 gcdabs1 12156 lcmdvds 12247 prmind2 12288 rpexp 12321 fermltl 12402 pcxnn0cl 12479 pcxcl 12480 pcabs 12495 pcmpt 12512 pockthg 12526 mulgnn0ass 13288 lgseisenlem2 15312 2lgslem1c 15331 trilpolemcl 15681 trilpolemlt1 15685 | 
| Copyright terms: Public domain | W3C validator |