| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| jaod.3 |
|
| Ref | Expression |
|---|---|
| mpjaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 |
. 2
| |
| 2 | jaod.1 |
. . 3
| |
| 3 | jaod.2 |
. . 3
| |
| 4 | 2, 3 | jaod 718 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3595 opth1 4270 onsucelsucexmidlem 4566 reldmtpos 6320 dftpos4 6330 nnm00 6597 xpfi 7002 omp1eomlem 7169 ctmlemr 7183 ctssdclemn0 7185 finomni 7215 indpi 7426 enq0tr 7518 prarloclem3step 7580 distrlem4prl 7668 distrlem4pru 7669 lelttr 8132 nn1suc 9026 nnsub 9046 nn0lt2 9424 uzin 9651 xrlelttr 9898 xlesubadd 9975 fzfig 10539 seq3id 10634 seq3z 10637 faclbnd 10850 facavg 10855 bcval5 10872 hashfzo 10931 iserex 11521 fsum3cvg 11560 fsumf1o 11572 fisumss 11574 fsumcl2lem 11580 fsumadd 11588 fsummulc2 11630 isumsplit 11673 fprodf1o 11770 prodssdc 11771 fprodssdc 11772 fprodmul 11773 absdvdsb 11991 dvdsabsb 11992 dvdsabseq 12029 m1exp1 12083 flodddiv4 12118 gcdaddm 12176 gcdabs1 12181 lcmdvds 12272 prmind2 12313 rpexp 12346 fermltl 12427 pcxnn0cl 12504 pcxcl 12505 pcabs 12520 pcmpt 12537 pockthg 12551 mulgnn0ass 13364 lgseisenlem2 15396 2lgslem1c 15415 trilpolemcl 15768 trilpolemlt1 15772 |
| Copyright terms: Public domain | W3C validator |