| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| jaod.3 |
|
| Ref | Expression |
|---|---|
| mpjaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 |
. 2
| |
| 2 | jaod.1 |
. . 3
| |
| 3 | jaod.2 |
. . 3
| |
| 4 | 2, 3 | jaod 722 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3637 opth1 4321 onsucelsucexmidlem 4620 reldmtpos 6397 dftpos4 6407 nnm00 6674 xpfi 7090 omp1eomlem 7257 ctmlemr 7271 ctssdclemn0 7273 finomni 7303 indpi 7525 enq0tr 7617 prarloclem3step 7679 distrlem4prl 7767 distrlem4pru 7768 lelttr 8231 nn1suc 9125 nnsub 9145 nn0lt2 9524 uzin 9751 xrlelttr 9998 xlesubadd 10075 fzfig 10647 seq3id 10742 seq3z 10745 faclbnd 10958 facavg 10963 bcval5 10980 hashfzo 11039 swrdccat3blem 11266 iserex 11845 fsum3cvg 11884 fsumf1o 11896 fisumss 11898 fsumcl2lem 11904 fsumadd 11912 fsummulc2 11954 isumsplit 11997 fprodf1o 12094 prodssdc 12095 fprodssdc 12096 fprodmul 12097 absdvdsb 12315 dvdsabsb 12316 dvdsabseq 12353 m1exp1 12407 flodddiv4 12442 gcdaddm 12500 gcdabs1 12505 lcmdvds 12596 prmind2 12637 rpexp 12670 fermltl 12751 pcxnn0cl 12828 pcxcl 12829 pcabs 12844 pcmpt 12861 pockthg 12875 mulgnn0ass 13690 lgseisenlem2 15744 2lgslem1c 15763 trilpolemcl 16364 trilpolemlt1 16368 |
| Copyright terms: Public domain | W3C validator |