![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpjaod |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaod.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | jaod.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | jaod 718 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ifbothdc 3590 opth1 4265 onsucelsucexmidlem 4561 reldmtpos 6306 dftpos4 6316 nnm00 6583 xpfi 6986 omp1eomlem 7153 ctmlemr 7167 ctssdclemn0 7169 finomni 7199 indpi 7402 enq0tr 7494 prarloclem3step 7556 distrlem4prl 7644 distrlem4pru 7645 lelttr 8108 nn1suc 9001 nnsub 9021 nn0lt2 9398 uzin 9625 xrlelttr 9872 xlesubadd 9949 fzfig 10501 seq3id 10596 seq3z 10599 faclbnd 10812 facavg 10817 bcval5 10834 hashfzo 10893 iserex 11482 fsum3cvg 11521 fsumf1o 11533 fisumss 11535 fsumcl2lem 11541 fsumadd 11549 fsummulc2 11591 isumsplit 11634 fprodf1o 11731 prodssdc 11732 fprodssdc 11733 fprodmul 11734 absdvdsb 11952 dvdsabsb 11953 dvdsabseq 11989 m1exp1 12042 flodddiv4 12075 gcdaddm 12121 gcdabs1 12126 lcmdvds 12217 prmind2 12258 rpexp 12291 fermltl 12372 pcxnn0cl 12448 pcxcl 12449 pcabs 12464 pcmpt 12481 pockthg 12495 mulgnn0ass 13228 lgseisenlem2 15187 trilpolemcl 15527 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |