| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version | ||
| Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| jaod.3 |
|
| Ref | Expression |
|---|---|
| mpjaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.3 |
. 2
| |
| 2 | jaod.1 |
. . 3
| |
| 3 | jaod.2 |
. . 3
| |
| 4 | 2, 3 | jaod 718 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbothdc 3604 opth1 4279 onsucelsucexmidlem 4575 reldmtpos 6329 dftpos4 6339 nnm00 6606 xpfi 7011 omp1eomlem 7178 ctmlemr 7192 ctssdclemn0 7194 finomni 7224 indpi 7437 enq0tr 7529 prarloclem3step 7591 distrlem4prl 7679 distrlem4pru 7680 lelttr 8143 nn1suc 9037 nnsub 9057 nn0lt2 9436 uzin 9663 xrlelttr 9910 xlesubadd 9987 fzfig 10556 seq3id 10651 seq3z 10654 faclbnd 10867 facavg 10872 bcval5 10889 hashfzo 10948 iserex 11569 fsum3cvg 11608 fsumf1o 11620 fisumss 11622 fsumcl2lem 11628 fsumadd 11636 fsummulc2 11678 isumsplit 11721 fprodf1o 11818 prodssdc 11819 fprodssdc 11820 fprodmul 11821 absdvdsb 12039 dvdsabsb 12040 dvdsabseq 12077 m1exp1 12131 flodddiv4 12166 gcdaddm 12224 gcdabs1 12229 lcmdvds 12320 prmind2 12361 rpexp 12394 fermltl 12475 pcxnn0cl 12552 pcxcl 12553 pcabs 12568 pcmpt 12585 pockthg 12599 mulgnn0ass 13412 lgseisenlem2 15466 2lgslem1c 15485 trilpolemcl 15840 trilpolemlt1 15844 |
| Copyright terms: Public domain | W3C validator |