Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpjaod | Unicode version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | |
jaod.2 | |
jaod.3 |
Ref | Expression |
---|---|
mpjaod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 | |
2 | jaod.1 | . . 3 | |
3 | jaod.2 | . . 3 | |
4 | 2, 3 | jaod 717 | . 2 |
5 | 1, 4 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ifbothdc 3564 opth1 4230 onsucelsucexmidlem 4522 reldmtpos 6244 dftpos4 6254 nnm00 6521 xpfi 6919 omp1eomlem 7083 ctmlemr 7097 ctssdclemn0 7099 finomni 7128 indpi 7316 enq0tr 7408 prarloclem3step 7470 distrlem4prl 7558 distrlem4pru 7559 lelttr 8020 nn1suc 8911 nnsub 8931 nn0lt2 9307 uzin 9533 xrlelttr 9777 xlesubadd 9854 fzfig 10400 seq3id 10478 seq3z 10481 faclbnd 10689 facavg 10694 bcval5 10711 hashfzo 10770 iserex 11315 fsum3cvg 11354 fsumf1o 11366 fisumss 11368 fsumcl2lem 11374 fsumadd 11382 fsummulc2 11424 isumsplit 11467 fprodf1o 11564 prodssdc 11565 fprodssdc 11566 fprodmul 11567 absdvdsb 11784 dvdsabsb 11785 dvdsabseq 11820 m1exp1 11873 flodddiv4 11906 gcdaddm 11952 gcdabs1 11957 lcmdvds 12046 prmind2 12087 rpexp 12120 fermltl 12201 pcxnn0cl 12277 pcxcl 12278 pcabs 12292 pcmpt 12308 pockthg 12322 mulgnn0ass 12879 trilpolemcl 14346 trilpolemlt1 14350 |
Copyright terms: Public domain | W3C validator |