ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nford Unicode version

Theorem nford 1504
Description: If in a context  x is not free in  ps and  ch, it is not free in  ( ps  \/  ch ). (Contributed by Jim Kingdon, 29-Oct-2019.)
Hypotheses
Ref Expression
nford.1  |-  ( ph  ->  F/ x ps )
nford.2  |-  ( ph  ->  F/ x ch )
Assertion
Ref Expression
nford  |-  ( ph  ->  F/ x ( ps  \/  ch ) )

Proof of Theorem nford
StepHypRef Expression
1 nford.1 . . . . 5  |-  ( ph  ->  F/ x ps )
2 nford.2 . . . . 5  |-  ( ph  ->  F/ x ch )
3 df-nf 1395 . . . . . . 7  |-  ( F/ x ps  <->  A. x
( ps  ->  A. x ps ) )
4 df-nf 1395 . . . . . . 7  |-  ( F/ x ch  <->  A. x
( ch  ->  A. x ch ) )
53, 4anbi12i 448 . . . . . 6  |-  ( ( F/ x ps  /\  F/ x ch )  <->  ( A. x ( ps  ->  A. x ps )  /\  A. x ( ch  ->  A. x ch ) ) )
65biimpi 118 . . . . 5  |-  ( ( F/ x ps  /\  F/ x ch )  -> 
( A. x ( ps  ->  A. x ps )  /\  A. x
( ch  ->  A. x ch ) ) )
71, 2, 6syl2anc 403 . . . 4  |-  ( ph  ->  ( A. x ( ps  ->  A. x ps )  /\  A. x
( ch  ->  A. x ch ) ) )
8 19.26 1415 . . . 4  |-  ( A. x ( ( ps 
->  A. x ps )  /\  ( ch  ->  A. x ch ) )  <->  ( A. x ( ps  ->  A. x ps )  /\  A. x ( ch  ->  A. x ch ) ) )
97, 8sylibr 132 . . 3  |-  ( ph  ->  A. x ( ( ps  ->  A. x ps )  /\  ( ch  ->  A. x ch )
) )
10 orc 668 . . . . . . 7  |-  ( ps 
->  ( ps  \/  ch ) )
1110alimi 1389 . . . . . 6  |-  ( A. x ps  ->  A. x
( ps  \/  ch ) )
1211imim2i 12 . . . . 5  |-  ( ( ps  ->  A. x ps )  ->  ( ps 
->  A. x ( ps  \/  ch ) ) )
13 olc 667 . . . . . . 7  |-  ( ch 
->  ( ps  \/  ch ) )
1413alimi 1389 . . . . . 6  |-  ( A. x ch  ->  A. x
( ps  \/  ch ) )
1514imim2i 12 . . . . 5  |-  ( ( ch  ->  A. x ch )  ->  ( ch 
->  A. x ( ps  \/  ch ) ) )
1612, 15jaao 674 . . . 4  |-  ( ( ( ps  ->  A. x ps )  /\  ( ch  ->  A. x ch )
)  ->  ( ( ps  \/  ch )  ->  A. x ( ps  \/  ch ) ) )
1716alimi 1389 . . 3  |-  ( A. x ( ( ps 
->  A. x ps )  /\  ( ch  ->  A. x ch ) )  ->  A. x
( ( ps  \/  ch )  ->  A. x
( ps  \/  ch ) ) )
189, 17syl 14 . 2  |-  ( ph  ->  A. x ( ( ps  \/  ch )  ->  A. x ( ps  \/  ch ) ) )
19 df-nf 1395 . 2  |-  ( F/ x ( ps  \/  ch )  <->  A. x ( ( ps  \/  ch )  ->  A. x ( ps  \/  ch ) ) )
2018, 19sylibr 132 1  |-  ( ph  ->  F/ x ( ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 664   A.wal 1287   F/wnf 1394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-gen 1383
This theorem depends on definitions:  df-bi 115  df-nf 1395
This theorem is referenced by:  nfifd  3418
  Copyright terms: Public domain W3C validator