| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . . 5
| |
| 2 | eqeq2 2215 |
. . . . 5
| |
| 3 | eleq1 2268 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3orbi123d 1324 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | eleq2 2269 |
. . . . 5
| |
| 7 | eqeq2 2215 |
. . . . 5
| |
| 8 | eleq1 2268 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3orbi123d 1324 |
. . . 4
|
| 10 | eleq2 2269 |
. . . . 5
| |
| 11 | eqeq2 2215 |
. . . . 5
| |
| 12 | eleq1 2268 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3orbi123d 1324 |
. . . 4
|
| 14 | eleq2 2269 |
. . . . 5
| |
| 15 | eqeq2 2215 |
. . . . 5
| |
| 16 | eleq1 2268 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3orbi123d 1324 |
. . . 4
|
| 18 | 0elnn 4668 |
. . . . 5
| |
| 19 | olc 713 |
. . . . . 6
| |
| 20 | 3orass 984 |
. . . . . 6
| |
| 21 | 19, 20 | sylibr 134 |
. . . . 5
|
| 22 | 18, 21 | syl 14 |
. . . 4
|
| 23 | df-3or 982 |
. . . . . 6
| |
| 24 | elex 2783 |
. . . . . . . 8
| |
| 25 | elsuc2g 4453 |
. . . . . . . . 9
| |
| 26 | 3mix1 1169 |
. . . . . . . . 9
| |
| 27 | 25, 26 | biimtrrdi 164 |
. . . . . . . 8
|
| 28 | 24, 27 | syl 14 |
. . . . . . 7
|
| 29 | nnsucelsuc 6579 |
. . . . . . . . 9
| |
| 30 | elsuci 4451 |
. . . . . . . . 9
| |
| 31 | 29, 30 | biimtrdi 163 |
. . . . . . . 8
|
| 32 | eqcom 2207 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | orbi2i 764 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimpi 120 |
. . . . . . . . . . 11
|
| 35 | 34 | orcomd 731 |
. . . . . . . . . 10
|
| 36 | 35 | olcd 736 |
. . . . . . . . 9
|
| 37 | 3orass 984 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylibr 134 |
. . . . . . . 8
|
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
|
| 40 | 28, 39 | jaao 721 |
. . . . . 6
|
| 41 | 23, 40 | biimtrid 152 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 9, 13, 17, 22, 42 | finds2 4650 |
. . 3
|
| 44 | 5, 43 | vtoclga 2839 |
. 2
|
| 45 | 44 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: nntri2 6582 nntri1 6584 nntri3 6585 nntri2or2 6586 nndceq 6587 nndcel 6588 nnsseleq 6589 nntr2 6591 nnawordex 6617 nnwetri 7015 nnnninfeq 7232 ltsopi 7435 pitri3or 7437 frec2uzlt2d 10551 nninfctlemfo 12394 ennnfonelemk 12804 ennnfonelemex 12818 |
| Copyright terms: Public domain | W3C validator |