| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . . 5
| |
| 2 | eqeq2 2217 |
. . . . 5
| |
| 3 | eleq1 2270 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3orbi123d 1324 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | eleq2 2271 |
. . . . 5
| |
| 7 | eqeq2 2217 |
. . . . 5
| |
| 8 | eleq1 2270 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3orbi123d 1324 |
. . . 4
|
| 10 | eleq2 2271 |
. . . . 5
| |
| 11 | eqeq2 2217 |
. . . . 5
| |
| 12 | eleq1 2270 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3orbi123d 1324 |
. . . 4
|
| 14 | eleq2 2271 |
. . . . 5
| |
| 15 | eqeq2 2217 |
. . . . 5
| |
| 16 | eleq1 2270 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3orbi123d 1324 |
. . . 4
|
| 18 | 0elnn 4685 |
. . . . 5
| |
| 19 | olc 713 |
. . . . . 6
| |
| 20 | 3orass 984 |
. . . . . 6
| |
| 21 | 19, 20 | sylibr 134 |
. . . . 5
|
| 22 | 18, 21 | syl 14 |
. . . 4
|
| 23 | df-3or 982 |
. . . . . 6
| |
| 24 | elex 2788 |
. . . . . . . 8
| |
| 25 | elsuc2g 4470 |
. . . . . . . . 9
| |
| 26 | 3mix1 1169 |
. . . . . . . . 9
| |
| 27 | 25, 26 | biimtrrdi 164 |
. . . . . . . 8
|
| 28 | 24, 27 | syl 14 |
. . . . . . 7
|
| 29 | nnsucelsuc 6600 |
. . . . . . . . 9
| |
| 30 | elsuci 4468 |
. . . . . . . . 9
| |
| 31 | 29, 30 | biimtrdi 163 |
. . . . . . . 8
|
| 32 | eqcom 2209 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | orbi2i 764 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimpi 120 |
. . . . . . . . . . 11
|
| 35 | 34 | orcomd 731 |
. . . . . . . . . 10
|
| 36 | 35 | olcd 736 |
. . . . . . . . 9
|
| 37 | 3orass 984 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylibr 134 |
. . . . . . . 8
|
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
|
| 40 | 28, 39 | jaao 721 |
. . . . . 6
|
| 41 | 23, 40 | biimtrid 152 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 9, 13, 17, 22, 42 | finds2 4667 |
. . 3
|
| 44 | 5, 43 | vtoclga 2844 |
. 2
|
| 45 | 44 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nntri2 6603 nntri1 6605 nntri3 6606 nntri2or2 6607 nndceq 6608 nndcel 6609 nnsseleq 6610 nntr2 6612 nnawordex 6638 nnwetri 7039 nnnninfeq 7256 ltsopi 7468 pitri3or 7470 frec2uzlt2d 10586 nninfctlemfo 12476 ennnfonelemk 12886 ennnfonelemex 12900 |
| Copyright terms: Public domain | W3C validator |