Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version |
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nntri3or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2221 | . . . . 5 | |
2 | eqeq2 2167 | . . . . 5 | |
3 | eleq1 2220 | . . . . 5 | |
4 | 1, 2, 3 | 3orbi123d 1293 | . . . 4 |
5 | 4 | imbi2d 229 | . . 3 |
6 | eleq2 2221 | . . . . 5 | |
7 | eqeq2 2167 | . . . . 5 | |
8 | eleq1 2220 | . . . . 5 | |
9 | 6, 7, 8 | 3orbi123d 1293 | . . . 4 |
10 | eleq2 2221 | . . . . 5 | |
11 | eqeq2 2167 | . . . . 5 | |
12 | eleq1 2220 | . . . . 5 | |
13 | 10, 11, 12 | 3orbi123d 1293 | . . . 4 |
14 | eleq2 2221 | . . . . 5 | |
15 | eqeq2 2167 | . . . . 5 | |
16 | eleq1 2220 | . . . . 5 | |
17 | 14, 15, 16 | 3orbi123d 1293 | . . . 4 |
18 | 0elnn 4576 | . . . . 5 | |
19 | olc 701 | . . . . . 6 | |
20 | 3orass 966 | . . . . . 6 | |
21 | 19, 20 | sylibr 133 | . . . . 5 |
22 | 18, 21 | syl 14 | . . . 4 |
23 | df-3or 964 | . . . . . 6 | |
24 | elex 2723 | . . . . . . . 8 | |
25 | elsuc2g 4364 | . . . . . . . . 9 | |
26 | 3mix1 1151 | . . . . . . . . 9 | |
27 | 25, 26 | syl6bir 163 | . . . . . . . 8 |
28 | 24, 27 | syl 14 | . . . . . . 7 |
29 | nnsucelsuc 6431 | . . . . . . . . 9 | |
30 | elsuci 4362 | . . . . . . . . 9 | |
31 | 29, 30 | syl6bi 162 | . . . . . . . 8 |
32 | eqcom 2159 | . . . . . . . . . . . . 13 | |
33 | 32 | orbi2i 752 | . . . . . . . . . . . 12 |
34 | 33 | biimpi 119 | . . . . . . . . . . 11 |
35 | 34 | orcomd 719 | . . . . . . . . . 10 |
36 | 35 | olcd 724 | . . . . . . . . 9 |
37 | 3orass 966 | . . . . . . . . 9 | |
38 | 36, 37 | sylibr 133 | . . . . . . . 8 |
39 | 31, 38 | syl6 33 | . . . . . . 7 |
40 | 28, 39 | jaao 709 | . . . . . 6 |
41 | 23, 40 | syl5bi 151 | . . . . 5 |
42 | 41 | ex 114 | . . . 4 |
43 | 9, 13, 17, 22, 42 | finds2 4558 | . . 3 |
44 | 5, 43 | vtoclga 2778 | . 2 |
45 | 44 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 962 wceq 1335 wcel 2128 cvv 2712 c0 3394 csuc 4324 com 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-tr 4063 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 |
This theorem is referenced by: nntri2 6434 nntri1 6436 nntri3 6437 nntri2or2 6438 nndceq 6439 nndcel 6440 nnsseleq 6441 nntr2 6443 nnawordex 6468 nnwetri 6853 ltsopi 7223 pitri3or 7225 frec2uzlt2d 10285 ennnfonelemk 12101 ennnfonelemex 12115 nninfalllemn 13542 |
Copyright terms: Public domain | W3C validator |