Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version |
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nntri3or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2234 | . . . . 5 | |
2 | eqeq2 2180 | . . . . 5 | |
3 | eleq1 2233 | . . . . 5 | |
4 | 1, 2, 3 | 3orbi123d 1306 | . . . 4 |
5 | 4 | imbi2d 229 | . . 3 |
6 | eleq2 2234 | . . . . 5 | |
7 | eqeq2 2180 | . . . . 5 | |
8 | eleq1 2233 | . . . . 5 | |
9 | 6, 7, 8 | 3orbi123d 1306 | . . . 4 |
10 | eleq2 2234 | . . . . 5 | |
11 | eqeq2 2180 | . . . . 5 | |
12 | eleq1 2233 | . . . . 5 | |
13 | 10, 11, 12 | 3orbi123d 1306 | . . . 4 |
14 | eleq2 2234 | . . . . 5 | |
15 | eqeq2 2180 | . . . . 5 | |
16 | eleq1 2233 | . . . . 5 | |
17 | 14, 15, 16 | 3orbi123d 1306 | . . . 4 |
18 | 0elnn 4603 | . . . . 5 | |
19 | olc 706 | . . . . . 6 | |
20 | 3orass 976 | . . . . . 6 | |
21 | 19, 20 | sylibr 133 | . . . . 5 |
22 | 18, 21 | syl 14 | . . . 4 |
23 | df-3or 974 | . . . . . 6 | |
24 | elex 2741 | . . . . . . . 8 | |
25 | elsuc2g 4390 | . . . . . . . . 9 | |
26 | 3mix1 1161 | . . . . . . . . 9 | |
27 | 25, 26 | syl6bir 163 | . . . . . . . 8 |
28 | 24, 27 | syl 14 | . . . . . . 7 |
29 | nnsucelsuc 6470 | . . . . . . . . 9 | |
30 | elsuci 4388 | . . . . . . . . 9 | |
31 | 29, 30 | syl6bi 162 | . . . . . . . 8 |
32 | eqcom 2172 | . . . . . . . . . . . . 13 | |
33 | 32 | orbi2i 757 | . . . . . . . . . . . 12 |
34 | 33 | biimpi 119 | . . . . . . . . . . 11 |
35 | 34 | orcomd 724 | . . . . . . . . . 10 |
36 | 35 | olcd 729 | . . . . . . . . 9 |
37 | 3orass 976 | . . . . . . . . 9 | |
38 | 36, 37 | sylibr 133 | . . . . . . . 8 |
39 | 31, 38 | syl6 33 | . . . . . . 7 |
40 | 28, 39 | jaao 714 | . . . . . 6 |
41 | 23, 40 | syl5bi 151 | . . . . 5 |
42 | 41 | ex 114 | . . . 4 |
43 | 9, 13, 17, 22, 42 | finds2 4585 | . . 3 |
44 | 5, 43 | vtoclga 2796 | . 2 |
45 | 44 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3o 972 wceq 1348 wcel 2141 cvv 2730 c0 3414 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 |
This theorem is referenced by: nntri2 6473 nntri1 6475 nntri3 6476 nntri2or2 6477 nndceq 6478 nndcel 6479 nnsseleq 6480 nntr2 6482 nnawordex 6508 nnwetri 6893 nnnninfeq 7104 ltsopi 7282 pitri3or 7284 frec2uzlt2d 10360 ennnfonelemk 12355 ennnfonelemex 12369 |
Copyright terms: Public domain | W3C validator |