| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| nntri3or | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 2260 | 
. . . . 5
 | |
| 2 | eqeq2 2206 | 
. . . . 5
 | |
| 3 | eleq1 2259 | 
. . . . 5
 | |
| 4 | 1, 2, 3 | 3orbi123d 1322 | 
. . . 4
 | 
| 5 | 4 | imbi2d 230 | 
. . 3
 | 
| 6 | eleq2 2260 | 
. . . . 5
 | |
| 7 | eqeq2 2206 | 
. . . . 5
 | |
| 8 | eleq1 2259 | 
. . . . 5
 | |
| 9 | 6, 7, 8 | 3orbi123d 1322 | 
. . . 4
 | 
| 10 | eleq2 2260 | 
. . . . 5
 | |
| 11 | eqeq2 2206 | 
. . . . 5
 | |
| 12 | eleq1 2259 | 
. . . . 5
 | |
| 13 | 10, 11, 12 | 3orbi123d 1322 | 
. . . 4
 | 
| 14 | eleq2 2260 | 
. . . . 5
 | |
| 15 | eqeq2 2206 | 
. . . . 5
 | |
| 16 | eleq1 2259 | 
. . . . 5
 | |
| 17 | 14, 15, 16 | 3orbi123d 1322 | 
. . . 4
 | 
| 18 | 0elnn 4655 | 
. . . . 5
 | |
| 19 | olc 712 | 
. . . . . 6
 | |
| 20 | 3orass 983 | 
. . . . . 6
 | |
| 21 | 19, 20 | sylibr 134 | 
. . . . 5
 | 
| 22 | 18, 21 | syl 14 | 
. . . 4
 | 
| 23 | df-3or 981 | 
. . . . . 6
 | |
| 24 | elex 2774 | 
. . . . . . . 8
 | |
| 25 | elsuc2g 4440 | 
. . . . . . . . 9
 | |
| 26 | 3mix1 1168 | 
. . . . . . . . 9
 | |
| 27 | 25, 26 | biimtrrdi 164 | 
. . . . . . . 8
 | 
| 28 | 24, 27 | syl 14 | 
. . . . . . 7
 | 
| 29 | nnsucelsuc 6549 | 
. . . . . . . . 9
 | |
| 30 | elsuci 4438 | 
. . . . . . . . 9
 | |
| 31 | 29, 30 | biimtrdi 163 | 
. . . . . . . 8
 | 
| 32 | eqcom 2198 | 
. . . . . . . . . . . . 13
 | |
| 33 | 32 | orbi2i 763 | 
. . . . . . . . . . . 12
 | 
| 34 | 33 | biimpi 120 | 
. . . . . . . . . . 11
 | 
| 35 | 34 | orcomd 730 | 
. . . . . . . . . 10
 | 
| 36 | 35 | olcd 735 | 
. . . . . . . . 9
 | 
| 37 | 3orass 983 | 
. . . . . . . . 9
 | |
| 38 | 36, 37 | sylibr 134 | 
. . . . . . . 8
 | 
| 39 | 31, 38 | syl6 33 | 
. . . . . . 7
 | 
| 40 | 28, 39 | jaao 720 | 
. . . . . 6
 | 
| 41 | 23, 40 | biimtrid 152 | 
. . . . 5
 | 
| 42 | 41 | ex 115 | 
. . . 4
 | 
| 43 | 9, 13, 17, 22, 42 | finds2 4637 | 
. . 3
 | 
| 44 | 5, 43 | vtoclga 2830 | 
. 2
 | 
| 45 | 44 | impcom 125 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: nntri2 6552 nntri1 6554 nntri3 6555 nntri2or2 6556 nndceq 6557 nndcel 6558 nnsseleq 6559 nntr2 6561 nnawordex 6587 nnwetri 6977 nnnninfeq 7194 ltsopi 7387 pitri3or 7389 frec2uzlt2d 10496 nninfctlemfo 12207 ennnfonelemk 12617 ennnfonelemex 12631 | 
| Copyright terms: Public domain | W3C validator |