| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . . 5
| |
| 2 | eqeq2 2239 |
. . . . 5
| |
| 3 | eleq1 2292 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3orbi123d 1345 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | eleq2 2293 |
. . . . 5
| |
| 7 | eqeq2 2239 |
. . . . 5
| |
| 8 | eleq1 2292 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3orbi123d 1345 |
. . . 4
|
| 10 | eleq2 2293 |
. . . . 5
| |
| 11 | eqeq2 2239 |
. . . . 5
| |
| 12 | eleq1 2292 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3orbi123d 1345 |
. . . 4
|
| 14 | eleq2 2293 |
. . . . 5
| |
| 15 | eqeq2 2239 |
. . . . 5
| |
| 16 | eleq1 2292 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3orbi123d 1345 |
. . . 4
|
| 18 | 0elnn 4711 |
. . . . 5
| |
| 19 | olc 716 |
. . . . . 6
| |
| 20 | 3orass 1005 |
. . . . . 6
| |
| 21 | 19, 20 | sylibr 134 |
. . . . 5
|
| 22 | 18, 21 | syl 14 |
. . . 4
|
| 23 | df-3or 1003 |
. . . . . 6
| |
| 24 | elex 2811 |
. . . . . . . 8
| |
| 25 | elsuc2g 4496 |
. . . . . . . . 9
| |
| 26 | 3mix1 1190 |
. . . . . . . . 9
| |
| 27 | 25, 26 | biimtrrdi 164 |
. . . . . . . 8
|
| 28 | 24, 27 | syl 14 |
. . . . . . 7
|
| 29 | nnsucelsuc 6637 |
. . . . . . . . 9
| |
| 30 | elsuci 4494 |
. . . . . . . . 9
| |
| 31 | 29, 30 | biimtrdi 163 |
. . . . . . . 8
|
| 32 | eqcom 2231 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | orbi2i 767 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimpi 120 |
. . . . . . . . . . 11
|
| 35 | 34 | orcomd 734 |
. . . . . . . . . 10
|
| 36 | 35 | olcd 739 |
. . . . . . . . 9
|
| 37 | 3orass 1005 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylibr 134 |
. . . . . . . 8
|
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
|
| 40 | 28, 39 | jaao 724 |
. . . . . 6
|
| 41 | 23, 40 | biimtrid 152 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 9, 13, 17, 22, 42 | finds2 4693 |
. . 3
|
| 44 | 5, 43 | vtoclga 2867 |
. 2
|
| 45 | 44 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: nntri2 6640 nntri1 6642 nntri3 6643 nntri2or2 6644 nndceq 6645 nndcel 6646 nnsseleq 6647 nntr2 6649 nnawordex 6675 nnwetri 7078 nnnninfeq 7295 ltsopi 7507 pitri3or 7509 frec2uzlt2d 10626 nninfctlemfo 12561 ennnfonelemk 12971 ennnfonelemex 12985 |
| Copyright terms: Public domain | W3C validator |