ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri3or Unicode version

Theorem nntri3or 6382
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nntri3or  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )

Proof of Theorem nntri3or
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2201 . . . . 5  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
2 eqeq2 2147 . . . . 5  |-  ( x  =  B  ->  ( A  =  x  <->  A  =  B ) )
3 eleq1 2200 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
41, 2, 33orbi123d 1289 . . . 4  |-  ( x  =  B  ->  (
( A  e.  x  \/  A  =  x  \/  x  e.  A
)  <->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) )
54imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  e.  x  \/  A  =  x  \/  x  e.  A
) )  <->  ( A  e.  om  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) ) ) )
6 eleq2 2201 . . . . 5  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
7 eqeq2 2147 . . . . 5  |-  ( x  =  (/)  ->  ( A  =  x  <->  A  =  (/) ) )
8 eleq1 2200 . . . . 5  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
96, 7, 83orbi123d 1289 . . . 4  |-  ( x  =  (/)  ->  ( ( A  e.  x  \/  A  =  x  \/  x  e.  A )  <-> 
( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
) ) )
10 eleq2 2201 . . . . 5  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
11 eqeq2 2147 . . . . 5  |-  ( x  =  y  ->  ( A  =  x  <->  A  =  y ) )
12 eleq1 2200 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1310, 11, 123orbi123d 1289 . . . 4  |-  ( x  =  y  ->  (
( A  e.  x  \/  A  =  x  \/  x  e.  A
)  <->  ( A  e.  y  \/  A  =  y  \/  y  e.  A ) ) )
14 eleq2 2201 . . . . 5  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
15 eqeq2 2147 . . . . 5  |-  ( x  =  suc  y  -> 
( A  =  x  <-> 
A  =  suc  y
) )
16 eleq1 2200 . . . . 5  |-  ( x  =  suc  y  -> 
( x  e.  A  <->  suc  y  e.  A ) )
1714, 15, 163orbi123d 1289 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  e.  x  \/  A  =  x  \/  x  e.  A )  <->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
18 0elnn 4527 . . . . 5  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
19 olc 700 . . . . . 6  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( A  e.  (/)  \/  ( A  =  (/)  \/  (/)  e.  A
) ) )
20 3orass 965 . . . . . 6  |-  ( ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
)  <->  ( A  e.  (/)  \/  ( A  =  (/)  \/  (/)  e.  A ) ) )
2119, 20sylibr 133 . . . . 5  |-  ( ( A  =  (/)  \/  (/)  e.  A
)  ->  ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A ) )
2218, 21syl 14 . . . 4  |-  ( A  e.  om  ->  ( A  e.  (/)  \/  A  =  (/)  \/  (/)  e.  A
) )
23 df-3or 963 . . . . . 6  |-  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A )  <-> 
( ( A  e.  y  \/  A  =  y )  \/  y  e.  A ) )
24 elex 2692 . . . . . . . 8  |-  ( y  e.  om  ->  y  e.  _V )
25 elsuc2g 4322 . . . . . . . . 9  |-  ( y  e.  _V  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
26 3mix1 1150 . . . . . . . . 9  |-  ( A  e.  suc  y  -> 
( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
)
2725, 26syl6bir 163 . . . . . . . 8  |-  ( y  e.  _V  ->  (
( A  e.  y  \/  A  =  y )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
2824, 27syl 14 . . . . . . 7  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
29 nnsucelsuc 6380 . . . . . . . . 9  |-  ( A  e.  om  ->  (
y  e.  A  <->  suc  y  e. 
suc  A ) )
30 elsuci 4320 . . . . . . . . 9  |-  ( suc  y  e.  suc  A  ->  ( suc  y  e.  A  \/  suc  y  =  A ) )
3129, 30syl6bi 162 . . . . . . . 8  |-  ( A  e.  om  ->  (
y  e.  A  -> 
( suc  y  e.  A  \/  suc  y  =  A ) ) )
32 eqcom 2139 . . . . . . . . . . . . 13  |-  ( suc  y  =  A  <->  A  =  suc  y )
3332orbi2i 751 . . . . . . . . . . . 12  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  <->  ( suc  y  e.  A  \/  A  =  suc  y ) )
3433biimpi 119 . . . . . . . . . . 11  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( suc  y  e.  A  \/  A  =  suc  y ) )
3534orcomd 718 . . . . . . . . . 10  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  =  suc  y  \/  suc  y  e.  A )
)
3635olcd 723 . . . . . . . . 9  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  e.  suc  y  \/  ( A  =  suc  y  \/ 
suc  y  e.  A
) ) )
37 3orass 965 . . . . . . . . 9  |-  ( ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )  <->  ( A  e.  suc  y  \/  ( A  =  suc  y  \/ 
suc  y  e.  A
) ) )
3836, 37sylibr 133 . . . . . . . 8  |-  ( ( suc  y  e.  A  \/  suc  y  =  A )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
)
3931, 38syl6 33 . . . . . . 7  |-  ( A  e.  om  ->  (
y  e.  A  -> 
( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
4028, 39jaao 708 . . . . . 6  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  \/  y  e.  A )  ->  ( A  e. 
suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) )
4123, 40syl5bi 151 . . . . 5  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A )  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A
) ) )
4241ex 114 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  \/  A  =  y  \/  y  e.  A
)  ->  ( A  e.  suc  y  \/  A  =  suc  y  \/  suc  y  e.  A )
) ) )
439, 13, 17, 22, 42finds2 4510 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  e.  x  \/  A  =  x  \/  x  e.  A ) ) )
445, 43vtoclga 2747 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
) )
4544impcom 124 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    \/ w3o 961    = wceq 1331    e. wcel 1480   _Vcvv 2681   (/)c0 3358   suc csuc 4282   omcom 4499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500
This theorem is referenced by:  nntri2  6383  nntri1  6385  nntri3  6386  nntri2or2  6387  nndceq  6388  nndcel  6389  nnsseleq  6390  nntr2  6392  nnawordex  6417  nnwetri  6797  ltsopi  7121  pitri3or  7123  frec2uzlt2d  10170  ennnfonelemk  11902  ennnfonelemex  11916  nninfalllemn  13191
  Copyright terms: Public domain W3C validator