Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version |
Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nntri3or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . . 5 | |
2 | eqeq2 2175 | . . . . 5 | |
3 | eleq1 2229 | . . . . 5 | |
4 | 1, 2, 3 | 3orbi123d 1301 | . . . 4 |
5 | 4 | imbi2d 229 | . . 3 |
6 | eleq2 2230 | . . . . 5 | |
7 | eqeq2 2175 | . . . . 5 | |
8 | eleq1 2229 | . . . . 5 | |
9 | 6, 7, 8 | 3orbi123d 1301 | . . . 4 |
10 | eleq2 2230 | . . . . 5 | |
11 | eqeq2 2175 | . . . . 5 | |
12 | eleq1 2229 | . . . . 5 | |
13 | 10, 11, 12 | 3orbi123d 1301 | . . . 4 |
14 | eleq2 2230 | . . . . 5 | |
15 | eqeq2 2175 | . . . . 5 | |
16 | eleq1 2229 | . . . . 5 | |
17 | 14, 15, 16 | 3orbi123d 1301 | . . . 4 |
18 | 0elnn 4596 | . . . . 5 | |
19 | olc 701 | . . . . . 6 | |
20 | 3orass 971 | . . . . . 6 | |
21 | 19, 20 | sylibr 133 | . . . . 5 |
22 | 18, 21 | syl 14 | . . . 4 |
23 | df-3or 969 | . . . . . 6 | |
24 | elex 2737 | . . . . . . . 8 | |
25 | elsuc2g 4383 | . . . . . . . . 9 | |
26 | 3mix1 1156 | . . . . . . . . 9 | |
27 | 25, 26 | syl6bir 163 | . . . . . . . 8 |
28 | 24, 27 | syl 14 | . . . . . . 7 |
29 | nnsucelsuc 6459 | . . . . . . . . 9 | |
30 | elsuci 4381 | . . . . . . . . 9 | |
31 | 29, 30 | syl6bi 162 | . . . . . . . 8 |
32 | eqcom 2167 | . . . . . . . . . . . . 13 | |
33 | 32 | orbi2i 752 | . . . . . . . . . . . 12 |
34 | 33 | biimpi 119 | . . . . . . . . . . 11 |
35 | 34 | orcomd 719 | . . . . . . . . . 10 |
36 | 35 | olcd 724 | . . . . . . . . 9 |
37 | 3orass 971 | . . . . . . . . 9 | |
38 | 36, 37 | sylibr 133 | . . . . . . . 8 |
39 | 31, 38 | syl6 33 | . . . . . . 7 |
40 | 28, 39 | jaao 709 | . . . . . 6 |
41 | 23, 40 | syl5bi 151 | . . . . 5 |
42 | 41 | ex 114 | . . . 4 |
43 | 9, 13, 17, 22, 42 | finds2 4578 | . . 3 |
44 | 5, 43 | vtoclga 2792 | . 2 |
45 | 44 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 967 wceq 1343 wcel 2136 cvv 2726 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nntri2 6462 nntri1 6464 nntri3 6465 nntri2or2 6466 nndceq 6467 nndcel 6468 nnsseleq 6469 nntr2 6471 nnawordex 6496 nnwetri 6881 nnnninfeq 7092 ltsopi 7261 pitri3or 7263 frec2uzlt2d 10339 ennnfonelemk 12333 ennnfonelemex 12347 |
Copyright terms: Public domain | W3C validator |