| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . . 5
| |
| 2 | eqeq2 2215 |
. . . . 5
| |
| 3 | eleq1 2268 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3orbi123d 1324 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | eleq2 2269 |
. . . . 5
| |
| 7 | eqeq2 2215 |
. . . . 5
| |
| 8 | eleq1 2268 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3orbi123d 1324 |
. . . 4
|
| 10 | eleq2 2269 |
. . . . 5
| |
| 11 | eqeq2 2215 |
. . . . 5
| |
| 12 | eleq1 2268 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3orbi123d 1324 |
. . . 4
|
| 14 | eleq2 2269 |
. . . . 5
| |
| 15 | eqeq2 2215 |
. . . . 5
| |
| 16 | eleq1 2268 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3orbi123d 1324 |
. . . 4
|
| 18 | 0elnn 4667 |
. . . . 5
| |
| 19 | olc 713 |
. . . . . 6
| |
| 20 | 3orass 984 |
. . . . . 6
| |
| 21 | 19, 20 | sylibr 134 |
. . . . 5
|
| 22 | 18, 21 | syl 14 |
. . . 4
|
| 23 | df-3or 982 |
. . . . . 6
| |
| 24 | elex 2783 |
. . . . . . . 8
| |
| 25 | elsuc2g 4452 |
. . . . . . . . 9
| |
| 26 | 3mix1 1169 |
. . . . . . . . 9
| |
| 27 | 25, 26 | biimtrrdi 164 |
. . . . . . . 8
|
| 28 | 24, 27 | syl 14 |
. . . . . . 7
|
| 29 | nnsucelsuc 6577 |
. . . . . . . . 9
| |
| 30 | elsuci 4450 |
. . . . . . . . 9
| |
| 31 | 29, 30 | biimtrdi 163 |
. . . . . . . 8
|
| 32 | eqcom 2207 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | orbi2i 764 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimpi 120 |
. . . . . . . . . . 11
|
| 35 | 34 | orcomd 731 |
. . . . . . . . . 10
|
| 36 | 35 | olcd 736 |
. . . . . . . . 9
|
| 37 | 3orass 984 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylibr 134 |
. . . . . . . 8
|
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
|
| 40 | 28, 39 | jaao 721 |
. . . . . 6
|
| 41 | 23, 40 | biimtrid 152 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 9, 13, 17, 22, 42 | finds2 4649 |
. . 3
|
| 44 | 5, 43 | vtoclga 2839 |
. 2
|
| 45 | 44 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: nntri2 6580 nntri1 6582 nntri3 6583 nntri2or2 6584 nndceq 6585 nndcel 6586 nnsseleq 6587 nntr2 6589 nnawordex 6615 nnwetri 7013 nnnninfeq 7230 ltsopi 7433 pitri3or 7435 frec2uzlt2d 10549 nninfctlemfo 12361 ennnfonelemk 12771 ennnfonelemex 12785 |
| Copyright terms: Public domain | W3C validator |