| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri3or | Unicode version | ||
| Description: Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2260 |
. . . . 5
| |
| 2 | eqeq2 2206 |
. . . . 5
| |
| 3 | eleq1 2259 |
. . . . 5
| |
| 4 | 1, 2, 3 | 3orbi123d 1322 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | eleq2 2260 |
. . . . 5
| |
| 7 | eqeq2 2206 |
. . . . 5
| |
| 8 | eleq1 2259 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3orbi123d 1322 |
. . . 4
|
| 10 | eleq2 2260 |
. . . . 5
| |
| 11 | eqeq2 2206 |
. . . . 5
| |
| 12 | eleq1 2259 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3orbi123d 1322 |
. . . 4
|
| 14 | eleq2 2260 |
. . . . 5
| |
| 15 | eqeq2 2206 |
. . . . 5
| |
| 16 | eleq1 2259 |
. . . . 5
| |
| 17 | 14, 15, 16 | 3orbi123d 1322 |
. . . 4
|
| 18 | 0elnn 4656 |
. . . . 5
| |
| 19 | olc 712 |
. . . . . 6
| |
| 20 | 3orass 983 |
. . . . . 6
| |
| 21 | 19, 20 | sylibr 134 |
. . . . 5
|
| 22 | 18, 21 | syl 14 |
. . . 4
|
| 23 | df-3or 981 |
. . . . . 6
| |
| 24 | elex 2774 |
. . . . . . . 8
| |
| 25 | elsuc2g 4441 |
. . . . . . . . 9
| |
| 26 | 3mix1 1168 |
. . . . . . . . 9
| |
| 27 | 25, 26 | biimtrrdi 164 |
. . . . . . . 8
|
| 28 | 24, 27 | syl 14 |
. . . . . . 7
|
| 29 | nnsucelsuc 6558 |
. . . . . . . . 9
| |
| 30 | elsuci 4439 |
. . . . . . . . 9
| |
| 31 | 29, 30 | biimtrdi 163 |
. . . . . . . 8
|
| 32 | eqcom 2198 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | orbi2i 763 |
. . . . . . . . . . . 12
|
| 34 | 33 | biimpi 120 |
. . . . . . . . . . 11
|
| 35 | 34 | orcomd 730 |
. . . . . . . . . 10
|
| 36 | 35 | olcd 735 |
. . . . . . . . 9
|
| 37 | 3orass 983 |
. . . . . . . . 9
| |
| 38 | 36, 37 | sylibr 134 |
. . . . . . . 8
|
| 39 | 31, 38 | syl6 33 |
. . . . . . 7
|
| 40 | 28, 39 | jaao 720 |
. . . . . 6
|
| 41 | 23, 40 | biimtrid 152 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 9, 13, 17, 22, 42 | finds2 4638 |
. . 3
|
| 44 | 5, 43 | vtoclga 2830 |
. 2
|
| 45 | 44 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: nntri2 6561 nntri1 6563 nntri3 6564 nntri2or2 6565 nndceq 6566 nndcel 6567 nnsseleq 6568 nntr2 6570 nnawordex 6596 nnwetri 6986 nnnninfeq 7203 ltsopi 7404 pitri3or 7406 frec2uzlt2d 10513 nninfctlemfo 12232 ennnfonelemk 12642 ennnfonelemex 12656 |
| Copyright terms: Public domain | W3C validator |