ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poxp Unicode version

Theorem poxp 6200
Description: A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
poxp.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
poxp  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
Distinct variable groups:    x, A, y   
x, B, y    x, R, y    x, S, y
Allowed substitution hints:    T( x, y)

Proof of Theorem poxp
Dummy variables  a  b  c  d  e  f  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4621 . . . . . . . 8  |-  ( t  e.  ( A  X.  B )  <->  E. a E. b ( t  = 
<. a ,  b >.  /\  ( a  e.  A  /\  b  e.  B
) ) )
2 elxp 4621 . . . . . . . 8  |-  ( u  e.  ( A  X.  B )  <->  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) ) )
3 elxp 4621 . . . . . . . 8  |-  ( v  e.  ( A  X.  B )  <->  E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) ) )
4 3an6 1312 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  /\  ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
) )  <->  ( (
t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  /\  ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) ) ) )
5 poirr 4285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  Po  A  /\  a  e.  A )  ->  -.  a R a )
65ex 114 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  Po  A  ->  (
a  e.  A  ->  -.  a R a ) )
7 poirr 4285 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  Po  B  /\  b  e.  B )  ->  -.  b S b )
87intnand 921 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( S  Po  B  /\  b  e.  B )  ->  -.  ( a  =  a  /\  b S b ) )
98ex 114 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( S  Po  B  ->  (
b  e.  B  ->  -.  ( a  =  a  /\  b S b ) ) )
106, 9im2anan9 588 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  ( -.  a R a  /\  -.  ( a  =  a  /\  b S b ) ) ) )
11 ioran 742 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( a R a  \/  ( a  =  a  /\  b S b ) )  <->  ( -.  a R a  /\  -.  ( a  =  a  /\  b S b ) ) )
1210, 11syl6ibr 161 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( a  e.  A  /\  b  e.  B )  ->  -.  ( a R a  \/  ( a  =  a  /\  b S b ) ) ) )
1312imp 123 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( a  e.  A  /\  b  e.  B ) )  ->  -.  ( a R a  \/  ( a  =  a  /\  b S b ) ) )
1413intnand 921 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( a  e.  A  /\  b  e.  B ) )  ->  -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) ) )
15143ad2antr1 1152 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  -.  ( (
( a  e.  A  /\  a  e.  A
)  /\  ( b  e.  B  /\  b  e.  B ) )  /\  ( a R a  \/  ( a  =  a  /\  b S b ) ) ) )
16 an4 576 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  <->  ( ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  /\  ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
) )  /\  (
( a R c  \/  ( a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) ) )
17 3an6 1312 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
)  <->  ( ( a  e.  A  /\  c  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  d  e.  B  /\  f  e.  B )
) )
18 potr 4286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
( a R c  /\  c R e )  ->  a R
e ) )
19183impia 1190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
)  /\  ( a R c  /\  c R e ) )  ->  a R e )
2019orcd 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
)  /\  ( a R c  /\  c R e ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) )
21203expia 1195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
( a R c  /\  c R e )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
2221expdimp 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( c R e  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
23 breq2 3986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( c  =  e  ->  (
a R c  <->  a R
e ) )
2423biimpa 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( c  =  e  /\  a R c )  -> 
a R e )
2524orcd 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( c  =  e  /\  a R c )  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) )
2625expcom 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a R c  ->  (
c  =  e  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
2726adantrd 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a R c  ->  (
( c  =  e  /\  d S f )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
2827adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( ( c  =  e  /\  d S f )  ->  (
a R e  \/  ( a  =  e  /\  b S f ) ) ) )
2922, 28jaod 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  a R c )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
3029ex 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  ->  (
a R c  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
31 potr 4286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
( b S d  /\  d S f )  ->  b S
f ) )
3231expdimp 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( d S f  ->  b S f ) )
3332anim2d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( ( c  =  e  /\  d S f )  ->  (
c  =  e  /\  b S f ) ) )
3433orim2d 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  /\  b S d )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( c R e  \/  ( c  =  e  /\  b S f ) ) ) )
35 breq1 3985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  =  c  ->  (
a R e  <->  c R
e ) )
36 equequ1 1700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  =  c  ->  (
a  =  e  <->  c  =  e ) )
3736anbi1d 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  =  c  ->  (
( a  =  e  /\  b S f )  <->  ( c  =  e  /\  b S f ) ) )
3835, 37orbi12d 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( a  =  c  ->  (
( a R e  \/  ( a  =  e  /\  b S f ) )  <->  ( c R e  \/  (
c  =  e  /\  b S f ) ) ) )
3938imbi2d 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  c  ->  (
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) )  <->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( c R e  \/  ( c  =  e  /\  b S f ) ) ) ) )
4034, 39syl5ibr 155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  c  ->  (
( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B ) )  /\  b S d )  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4140expd 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  c  ->  (
( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
b S d  -> 
( ( c R e  \/  ( c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
4241com12 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
a  =  c  -> 
( b S d  ->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
4342impd 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) )  ->  (
( a  =  c  /\  b S d )  ->  ( (
c R e  \/  ( c  =  e  /\  d S f ) )  ->  (
a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4430, 43jaao 709 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( a R c  \/  ( a  =  c  /\  b S d ) )  ->  ( ( c R e  \/  (
c  =  e  /\  d S f ) )  ->  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
4544impd 252 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  Po  A  /\  ( a  e.  A  /\  c  e.  A  /\  e  e.  A
) )  /\  ( S  Po  B  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
4645an4s 578 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  c  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  d  e.  B  /\  f  e.  B
) ) )  -> 
( ( ( a R c  \/  (
a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) )  ->  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
4717, 46sylan2b 285 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) )  -> 
( a R e  \/  ( a  =  e  /\  b S f ) ) ) )
48 an4 576 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) )  <->  ( (
a  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  f  e.  B
) ) )
4948biimpi 119 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) )  -> 
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
) )
50493adant2 1006 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
a  e.  A  /\  e  e.  A )  /\  ( b  e.  B  /\  f  e.  B
) ) )
5150adantl 275 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
) )
5247, 51jctild 314 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) )  -> 
( ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
5352adantld 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( (
c  e.  A  /\  e  e.  A )  /\  ( d  e.  B  /\  f  e.  B
) ) )  /\  ( ( a R c  \/  ( a  =  c  /\  b S d ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  (
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
5416, 53syl5bi 151 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) )
5515, 54jca 304 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( (
a  e.  A  /\  b  e.  B )  /\  ( c  e.  A  /\  d  e.  B
)  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( -.  (
( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
56 breq12 3987 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  =  <. a ,  b >.  /\  t  =  <. a ,  b
>. )  ->  ( t T t  <->  <. a ,  b >. T <. a ,  b >. )
)
5756anidms 395 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  <. a ,  b
>.  ->  ( t T t  <->  <. a ,  b
>. T <. a ,  b
>. ) )
5857notbid 657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  <. a ,  b
>.  ->  ( -.  t T t  <->  -.  <. a ,  b >. T <. a ,  b >. )
)
59583ad2ant1 1008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( -.  t T t  <->  -.  <. a ,  b >. T <. a ,  b >. )
)
60 breq12 3987 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d >. )
)
61603adant3 1007 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( t T u  <->  <. a ,  b >. T <. c ,  d
>. ) )
62 breq12 3987 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( u  =  <. c ,  d >.  /\  v  =  <. e ,  f
>. )  ->  ( u T v  <->  <. c ,  d >. T <. e ,  f >. )
)
63623adant1 1005 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( u T v  <->  <. c ,  d >. T <. e ,  f
>. ) )
6461, 63anbi12d 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( t T u  /\  u T v )  <->  ( <. a ,  b >. T <. c ,  d >.  /\  <. c ,  d >. T <. e ,  f >. )
) )
65 breq12 3987 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  =  <. a ,  b >.  /\  v  =  <. e ,  f
>. )  ->  ( t T v  <->  <. a ,  b >. T <. e ,  f >. )
)
66653adant2 1006 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( t T v  <->  <. a ,  b >. T <. e ,  f
>. ) )
6764, 66imbi12d 233 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( t T u  /\  u T v )  -> 
t T v )  <-> 
( ( <. a ,  b >. T <. c ,  d >.  /\  <. c ,  d >. T <. e ,  f >. )  -> 
<. a ,  b >. T <. e ,  f
>. ) ) )
6859, 67anbi12d 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) )  <->  ( -.  <.
a ,  b >. T <. a ,  b
>.  /\  ( ( <.
a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )
) ) )
69 poxp.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
7069xporderlem 6199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
a ,  b >. T <. a ,  b
>. 
<->  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) ) )
7170notbii 658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -. 
<. a ,  b >. T <. a ,  b
>. 
<->  -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  ( b  e.  B  /\  b  e.  B
) )  /\  (
a R a  \/  ( a  =  a  /\  b S b ) ) ) )
7269xporderlem 6199 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
7369xporderlem 6199 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
c ,  d >. T <. e ,  f
>. 
<->  ( ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
)  /\  ( c R e  \/  (
c  =  e  /\  d S f ) ) ) )
7472, 73anbi12i 456 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
<. a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  <->  ( ( ( ( a  e.  A  /\  c  e.  A
)  /\  ( b  e.  B  /\  d  e.  B ) )  /\  ( a R c  \/  ( a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A )  /\  ( d  e.  B  /\  f  e.  B
) )  /\  (
c R e  \/  ( c  =  e  /\  d S f ) ) ) ) )
7569xporderlem 6199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
a ,  b >. T <. e ,  f
>. 
<->  ( ( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) )
7674, 75imbi12i 238 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( <. a ,  b
>. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )  <->  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A )  /\  (
d  e.  B  /\  f  e.  B )
)  /\  ( c R e  \/  (
c  =  e  /\  d S f ) ) ) )  ->  (
( ( a  e.  A  /\  e  e.  A )  /\  (
b  e.  B  /\  f  e.  B )
)  /\  ( a R e  \/  (
a  =  e  /\  b S f ) ) ) ) )
7771, 76anbi12i 456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  <. a ,  b
>. T <. a ,  b
>.  /\  ( ( <.
a ,  b >. T <. c ,  d
>.  /\  <. c ,  d
>. T <. e ,  f
>. )  ->  <. a ,  b >. T <. e ,  f >. )
)  <->  ( -.  (
( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) )
7868, 77bitrdi 195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) )  <->  ( -.  ( ( ( a  e.  A  /\  a  e.  A )  /\  (
b  e.  B  /\  b  e.  B )
)  /\  ( a R a  \/  (
a  =  a  /\  b S b ) ) )  /\  ( ( ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  /\  ( ( ( c  e.  A  /\  e  e.  A
)  /\  ( d  e.  B  /\  f  e.  B ) )  /\  ( c R e  \/  ( c  =  e  /\  d S f ) ) ) )  ->  ( (
( a  e.  A  /\  e  e.  A
)  /\  ( b  e.  B  /\  f  e.  B ) )  /\  ( a R e  \/  ( a  =  e  /\  b S f ) ) ) ) ) ) )
7955, 78syl5ibr 155 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( R  Po  A  /\  S  Po  B )  /\  (
( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B )  /\  (
e  e.  A  /\  f  e.  B )
) )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) )
8079expcomd 1429 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  ->  ( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) )
8180imp 123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t  =  <. a ,  b >.  /\  u  =  <. c ,  d
>.  /\  v  =  <. e ,  f >. )  /\  ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )  /\  ( e  e.  A  /\  f  e.  B
) ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
824, 81sylbi 120 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  /\  ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
83823exp 1192 . . . . . . . . . . . . . . 15  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( (
u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8483com3l 81 . . . . . . . . . . . . . 14  |-  ( ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8584exlimivv 1884 . . . . . . . . . . . . 13  |-  ( E. c E. d ( u  =  <. c ,  d >.  /\  (
c  e.  A  /\  d  e.  B )
)  ->  ( (
v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) ) )
8685com3l 81 . . . . . . . . . . . 12  |-  ( ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8786exlimivv 1884 . . . . . . . . . . 11  |-  ( E. e E. f ( v  =  <. e ,  f >.  /\  (
e  e.  A  /\  f  e.  B )
)  ->  ( (
t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( ( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8887com3l 81 . . . . . . . . . 10  |-  ( ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
8988exlimivv 1884 . . . . . . . . 9  |-  ( E. a E. b ( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  ->  ( E. c E. d ( u  =  <. c ,  d
>.  /\  ( c  e.  A  /\  d  e.  B ) )  -> 
( E. e E. f ( v  = 
<. e ,  f >.  /\  ( e  e.  A  /\  f  e.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) ) ) )
90893imp 1183 . . . . . . . 8  |-  ( ( E. a E. b
( t  =  <. a ,  b >.  /\  (
a  e.  A  /\  b  e.  B )
)  /\  E. c E. d ( u  = 
<. c ,  d >.  /\  ( c  e.  A  /\  d  e.  B
) )  /\  E. e E. f ( v  =  <. e ,  f
>.  /\  ( e  e.  A  /\  f  e.  B ) ) )  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) )
911, 2, 3, 90syl3anb 1271 . . . . . . 7  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B )  /\  v  e.  ( A  X.  B
) )  ->  (
( R  Po  A  /\  S  Po  B
)  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
92913expia 1195 . . . . . 6  |-  ( ( t  e.  ( A  X.  B )  /\  u  e.  ( A  X.  B ) )  -> 
( v  e.  ( A  X.  B )  ->  ( ( R  Po  A  /\  S  Po  B )  ->  ( -.  t T t  /\  ( ( t T u  /\  u T v )  ->  t T v ) ) ) ) )
9392com3r 79 . . . . 5  |-  ( ( R  Po  A  /\  S  Po  B )  ->  ( ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) )  ->  (
v  e.  ( A  X.  B )  -> 
( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) ) ) )
9493imp 123 . . . 4  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) ) )  -> 
( v  e.  ( A  X.  B )  ->  ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) ) )
9594ralrimiv 2538 . . 3  |-  ( ( ( R  Po  A  /\  S  Po  B
)  /\  ( t  e.  ( A  X.  B
)  /\  u  e.  ( A  X.  B
) ) )  ->  A. v  e.  ( A  X.  B ) ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) )
9695ralrimivva 2548 . 2  |-  ( ( R  Po  A  /\  S  Po  B )  ->  A. t  e.  ( A  X.  B ) A. u  e.  ( A  X.  B ) A. v  e.  ( A  X.  B ) ( -.  t T t  /\  ( ( t T u  /\  u T v )  -> 
t T v ) ) )
97 df-po 4274 . 2  |-  ( T  Po  ( A  X.  B )  <->  A. t  e.  ( A  X.  B
) A. u  e.  ( A  X.  B
) A. v  e.  ( A  X.  B
) ( -.  t T t  /\  (
( t T u  /\  u T v )  ->  t T
v ) ) )
9896, 97sylibr 133 1  |-  ( ( R  Po  A  /\  S  Po  B )  ->  T  Po  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   <.cop 3579   class class class wbr 3982   {copab 4042    Po wpo 4272    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator