| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funun | Unicode version | ||
| Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5297 |
. . . . 5
| |
| 2 | funrel 5297 |
. . . . 5
| |
| 3 | 1, 2 | anim12i 338 |
. . . 4
|
| 4 | relun 4800 |
. . . 4
| |
| 5 | 3, 4 | sylibr 134 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | elun 3318 |
. . . . . . . 8
| |
| 8 | elun 3318 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . 7
|
| 10 | anddi 823 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 184 |
. . . . . 6
|
| 12 | disj1 3515 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | biimpi 120 |
. . . . . . . . . . . 12
|
| 14 | 13 | 19.21bi 1582 |
. . . . . . . . . . 11
|
| 15 | imnan 692 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylib 122 |
. . . . . . . . . 10
|
| 17 | vex 2776 |
. . . . . . . . . . . 12
| |
| 18 | vex 2776 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | opeldm 4890 |
. . . . . . . . . . 11
|
| 20 | vex 2776 |
. . . . . . . . . . . 12
| |
| 21 | 17, 20 | opeldm 4890 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anim12i 338 |
. . . . . . . . . 10
|
| 23 | 16, 22 | nsyl 629 |
. . . . . . . . 9
|
| 24 | orel2 728 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 14 | con2d 625 |
. . . . . . . . . . 11
|
| 27 | imnan 692 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . 10
|
| 29 | 17, 18 | opeldm 4890 |
. . . . . . . . . . 11
|
| 30 | 17, 20 | opeldm 4890 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | anim12i 338 |
. . . . . . . . . 10
|
| 32 | 28, 31 | nsyl 629 |
. . . . . . . . 9
|
| 33 | orel1 727 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 25, 34 | orim12d 788 |
. . . . . . 7
|
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 11, 36 | biimtrid 152 |
. . . . 5
|
| 38 | dffun4 5291 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
|
| 40 | 39 | 19.21bi 1582 |
. . . . . . . 8
|
| 41 | 40 | 19.21bbi 1583 |
. . . . . . 7
|
| 42 | dffun4 5291 |
. . . . . . . . . 10
| |
| 43 | 42 | simprbi 275 |
. . . . . . . . 9
|
| 44 | 43 | 19.21bi 1582 |
. . . . . . . 8
|
| 45 | 44 | 19.21bbi 1583 |
. . . . . . 7
|
| 46 | 41, 45 | jaao 721 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 37, 47 | syld 45 |
. . . 4
|
| 49 | 48 | alrimiv 1898 |
. . 3
|
| 50 | 49 | alrimivv 1899 |
. 2
|
| 51 | dffun4 5291 |
. 2
| |
| 52 | 6, 50, 51 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-fun 5282 |
| This theorem is referenced by: funprg 5333 funtpg 5334 funtp 5336 fnun 5391 fvun1 5658 sbthlem7 7080 sbthlemi8 7081 casefun 7202 caseinj 7206 djufun 7221 djuinj 7223 exmidfodomrlemim 7325 setsfun 12942 setsfun0 12943 strleund 13010 strleun 13011 |
| Copyright terms: Public domain | W3C validator |