Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funun | Unicode version |
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
funun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5215 | . . . . 5 | |
2 | funrel 5215 | . . . . 5 | |
3 | 1, 2 | anim12i 336 | . . . 4 |
4 | relun 4728 | . . . 4 | |
5 | 3, 4 | sylibr 133 | . . 3 |
6 | 5 | adantr 274 | . 2 |
7 | elun 3268 | . . . . . . . 8 | |
8 | elun 3268 | . . . . . . . 8 | |
9 | 7, 8 | anbi12i 457 | . . . . . . 7 |
10 | anddi 816 | . . . . . . 7 | |
11 | 9, 10 | bitri 183 | . . . . . 6 |
12 | disj1 3465 | . . . . . . . . . . . . 13 | |
13 | 12 | biimpi 119 | . . . . . . . . . . . 12 |
14 | 13 | 19.21bi 1551 | . . . . . . . . . . 11 |
15 | imnan 685 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylib 121 | . . . . . . . . . 10 |
17 | vex 2733 | . . . . . . . . . . . 12 | |
18 | vex 2733 | . . . . . . . . . . . 12 | |
19 | 17, 18 | opeldm 4814 | . . . . . . . . . . 11 |
20 | vex 2733 | . . . . . . . . . . . 12 | |
21 | 17, 20 | opeldm 4814 | . . . . . . . . . . 11 |
22 | 19, 21 | anim12i 336 | . . . . . . . . . 10 |
23 | 16, 22 | nsyl 623 | . . . . . . . . 9 |
24 | orel2 721 | . . . . . . . . 9 | |
25 | 23, 24 | syl 14 | . . . . . . . 8 |
26 | 14 | con2d 619 | . . . . . . . . . . 11 |
27 | imnan 685 | . . . . . . . . . . 11 | |
28 | 26, 27 | sylib 121 | . . . . . . . . . 10 |
29 | 17, 18 | opeldm 4814 | . . . . . . . . . . 11 |
30 | 17, 20 | opeldm 4814 | . . . . . . . . . . 11 |
31 | 29, 30 | anim12i 336 | . . . . . . . . . 10 |
32 | 28, 31 | nsyl 623 | . . . . . . . . 9 |
33 | orel1 720 | . . . . . . . . 9 | |
34 | 32, 33 | syl 14 | . . . . . . . 8 |
35 | 25, 34 | orim12d 781 | . . . . . . 7 |
36 | 35 | adantl 275 | . . . . . 6 |
37 | 11, 36 | syl5bi 151 | . . . . 5 |
38 | dffun4 5209 | . . . . . . . . . 10 | |
39 | 38 | simprbi 273 | . . . . . . . . 9 |
40 | 39 | 19.21bi 1551 | . . . . . . . 8 |
41 | 40 | 19.21bbi 1552 | . . . . . . 7 |
42 | dffun4 5209 | . . . . . . . . . 10 | |
43 | 42 | simprbi 273 | . . . . . . . . 9 |
44 | 43 | 19.21bi 1551 | . . . . . . . 8 |
45 | 44 | 19.21bbi 1552 | . . . . . . 7 |
46 | 41, 45 | jaao 714 | . . . . . 6 |
47 | 46 | adantr 274 | . . . . 5 |
48 | 37, 47 | syld 45 | . . . 4 |
49 | 48 | alrimiv 1867 | . . 3 |
50 | 49 | alrimivv 1868 | . 2 |
51 | dffun4 5209 | . 2 | |
52 | 6, 50, 51 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wal 1346 wceq 1348 wcel 2141 cun 3119 cin 3120 c0 3414 cop 3586 cdm 4611 wrel 4616 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 |
This theorem is referenced by: funprg 5248 funtpg 5249 funtp 5251 fnun 5304 fvun1 5562 sbthlem7 6940 sbthlemi8 6941 casefun 7062 caseinj 7066 djufun 7081 djuinj 7083 exmidfodomrlemim 7178 setsfun 12451 setsfun0 12452 strleund 12506 strleun 12507 |
Copyright terms: Public domain | W3C validator |