| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funun | Unicode version | ||
| Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5285 |
. . . . 5
| |
| 2 | funrel 5285 |
. . . . 5
| |
| 3 | 1, 2 | anim12i 338 |
. . . 4
|
| 4 | relun 4790 |
. . . 4
| |
| 5 | 3, 4 | sylibr 134 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | elun 3313 |
. . . . . . . 8
| |
| 8 | elun 3313 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . 7
|
| 10 | anddi 822 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 184 |
. . . . . 6
|
| 12 | disj1 3510 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | biimpi 120 |
. . . . . . . . . . . 12
|
| 14 | 13 | 19.21bi 1580 |
. . . . . . . . . . 11
|
| 15 | imnan 691 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylib 122 |
. . . . . . . . . 10
|
| 17 | vex 2774 |
. . . . . . . . . . . 12
| |
| 18 | vex 2774 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | opeldm 4879 |
. . . . . . . . . . 11
|
| 20 | vex 2774 |
. . . . . . . . . . . 12
| |
| 21 | 17, 20 | opeldm 4879 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anim12i 338 |
. . . . . . . . . 10
|
| 23 | 16, 22 | nsyl 629 |
. . . . . . . . 9
|
| 24 | orel2 727 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 14 | con2d 625 |
. . . . . . . . . . 11
|
| 27 | imnan 691 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . 10
|
| 29 | 17, 18 | opeldm 4879 |
. . . . . . . . . . 11
|
| 30 | 17, 20 | opeldm 4879 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | anim12i 338 |
. . . . . . . . . 10
|
| 32 | 28, 31 | nsyl 629 |
. . . . . . . . 9
|
| 33 | orel1 726 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 25, 34 | orim12d 787 |
. . . . . . 7
|
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 11, 36 | biimtrid 152 |
. . . . 5
|
| 38 | dffun4 5279 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
|
| 40 | 39 | 19.21bi 1580 |
. . . . . . . 8
|
| 41 | 40 | 19.21bbi 1581 |
. . . . . . 7
|
| 42 | dffun4 5279 |
. . . . . . . . . 10
| |
| 43 | 42 | simprbi 275 |
. . . . . . . . 9
|
| 44 | 43 | 19.21bi 1580 |
. . . . . . . 8
|
| 45 | 44 | 19.21bbi 1581 |
. . . . . . 7
|
| 46 | 41, 45 | jaao 720 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 37, 47 | syld 45 |
. . . 4
|
| 49 | 48 | alrimiv 1896 |
. . 3
|
| 50 | 49 | alrimivv 1897 |
. 2
|
| 51 | dffun4 5279 |
. 2
| |
| 52 | 6, 50, 51 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4338 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-fun 5270 |
| This theorem is referenced by: funprg 5318 funtpg 5319 funtp 5321 fnun 5376 fvun1 5639 sbthlem7 7047 sbthlemi8 7048 casefun 7169 caseinj 7173 djufun 7188 djuinj 7190 exmidfodomrlemim 7291 setsfun 12786 setsfun0 12787 strleund 12854 strleun 12855 |
| Copyright terms: Public domain | W3C validator |