| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funun | Unicode version | ||
| Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5334 |
. . . . 5
| |
| 2 | funrel 5334 |
. . . . 5
| |
| 3 | 1, 2 | anim12i 338 |
. . . 4
|
| 4 | relun 4835 |
. . . 4
| |
| 5 | 3, 4 | sylibr 134 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | elun 3345 |
. . . . . . . 8
| |
| 8 | elun 3345 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . 7
|
| 10 | anddi 826 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 184 |
. . . . . 6
|
| 12 | disj1 3542 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | biimpi 120 |
. . . . . . . . . . . 12
|
| 14 | 13 | 19.21bi 1604 |
. . . . . . . . . . 11
|
| 15 | imnan 694 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylib 122 |
. . . . . . . . . 10
|
| 17 | vex 2802 |
. . . . . . . . . . . 12
| |
| 18 | vex 2802 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | opeldm 4925 |
. . . . . . . . . . 11
|
| 20 | vex 2802 |
. . . . . . . . . . . 12
| |
| 21 | 17, 20 | opeldm 4925 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anim12i 338 |
. . . . . . . . . 10
|
| 23 | 16, 22 | nsyl 631 |
. . . . . . . . 9
|
| 24 | orel2 731 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 14 | con2d 627 |
. . . . . . . . . . 11
|
| 27 | imnan 694 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . 10
|
| 29 | 17, 18 | opeldm 4925 |
. . . . . . . . . . 11
|
| 30 | 17, 20 | opeldm 4925 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | anim12i 338 |
. . . . . . . . . 10
|
| 32 | 28, 31 | nsyl 631 |
. . . . . . . . 9
|
| 33 | orel1 730 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 25, 34 | orim12d 791 |
. . . . . . 7
|
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 11, 36 | biimtrid 152 |
. . . . 5
|
| 38 | dffun4 5328 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
|
| 40 | 39 | 19.21bi 1604 |
. . . . . . . 8
|
| 41 | 40 | 19.21bbi 1605 |
. . . . . . 7
|
| 42 | dffun4 5328 |
. . . . . . . . . 10
| |
| 43 | 42 | simprbi 275 |
. . . . . . . . 9
|
| 44 | 43 | 19.21bi 1604 |
. . . . . . . 8
|
| 45 | 44 | 19.21bbi 1605 |
. . . . . . 7
|
| 46 | 41, 45 | jaao 724 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 37, 47 | syld 45 |
. . . 4
|
| 49 | 48 | alrimiv 1920 |
. . 3
|
| 50 | 49 | alrimivv 1921 |
. 2
|
| 51 | dffun4 5328 |
. 2
| |
| 52 | 6, 50, 51 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-fun 5319 |
| This theorem is referenced by: funprg 5370 funtpg 5371 funtp 5373 fnun 5428 fvun1 5699 sbthlem7 7126 sbthlemi8 7127 casefun 7248 caseinj 7252 djufun 7267 djuinj 7269 exmidfodomrlemim 7375 setsfun 13062 setsfun0 13063 strleund 13131 strleun 13132 |
| Copyright terms: Public domain | W3C validator |