| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funun | Unicode version | ||
| Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5276 |
. . . . 5
| |
| 2 | funrel 5276 |
. . . . 5
| |
| 3 | 1, 2 | anim12i 338 |
. . . 4
|
| 4 | relun 4781 |
. . . 4
| |
| 5 | 3, 4 | sylibr 134 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | elun 3305 |
. . . . . . . 8
| |
| 8 | elun 3305 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . 7
|
| 10 | anddi 822 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 184 |
. . . . . 6
|
| 12 | disj1 3502 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | biimpi 120 |
. . . . . . . . . . . 12
|
| 14 | 13 | 19.21bi 1572 |
. . . . . . . . . . 11
|
| 15 | imnan 691 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylib 122 |
. . . . . . . . . 10
|
| 17 | vex 2766 |
. . . . . . . . . . . 12
| |
| 18 | vex 2766 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | opeldm 4870 |
. . . . . . . . . . 11
|
| 20 | vex 2766 |
. . . . . . . . . . . 12
| |
| 21 | 17, 20 | opeldm 4870 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anim12i 338 |
. . . . . . . . . 10
|
| 23 | 16, 22 | nsyl 629 |
. . . . . . . . 9
|
| 24 | orel2 727 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 14 | con2d 625 |
. . . . . . . . . . 11
|
| 27 | imnan 691 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . 10
|
| 29 | 17, 18 | opeldm 4870 |
. . . . . . . . . . 11
|
| 30 | 17, 20 | opeldm 4870 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | anim12i 338 |
. . . . . . . . . 10
|
| 32 | 28, 31 | nsyl 629 |
. . . . . . . . 9
|
| 33 | orel1 726 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 25, 34 | orim12d 787 |
. . . . . . 7
|
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 11, 36 | biimtrid 152 |
. . . . 5
|
| 38 | dffun4 5270 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
|
| 40 | 39 | 19.21bi 1572 |
. . . . . . . 8
|
| 41 | 40 | 19.21bbi 1573 |
. . . . . . 7
|
| 42 | dffun4 5270 |
. . . . . . . . . 10
| |
| 43 | 42 | simprbi 275 |
. . . . . . . . 9
|
| 44 | 43 | 19.21bi 1572 |
. . . . . . . 8
|
| 45 | 44 | 19.21bbi 1573 |
. . . . . . 7
|
| 46 | 41, 45 | jaao 720 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 37, 47 | syld 45 |
. . . 4
|
| 49 | 48 | alrimiv 1888 |
. . 3
|
| 50 | 49 | alrimivv 1889 |
. 2
|
| 51 | dffun4 5270 |
. 2
| |
| 52 | 6, 50, 51 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-fun 5261 |
| This theorem is referenced by: funprg 5309 funtpg 5310 funtp 5312 fnun 5367 fvun1 5630 sbthlem7 7038 sbthlemi8 7039 casefun 7160 caseinj 7164 djufun 7179 djuinj 7181 exmidfodomrlemim 7280 setsfun 12738 setsfun0 12739 strleund 12806 strleun 12807 |
| Copyright terms: Public domain | W3C validator |