ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funun Unicode version

Theorem funun 5137
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )

Proof of Theorem funun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5110 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 funrel 5110 . . . . 5  |-  ( Fun 
G  ->  Rel  G )
31, 2anim12i 336 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  F  /\  Rel  G ) )
4 relun 4626 . . . 4  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
53, 4sylibr 133 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  Rel  ( F  u.  G ) )
65adantr 274 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Rel  ( F  u.  G
) )
7 elun 3187 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( F  u.  G
)  <->  ( <. x ,  y >.  e.  F  \/  <. x ,  y
>.  e.  G ) )
8 elun 3187 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( F  u.  G
)  <->  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )
97, 8anbi12i 455 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( <.
x ,  y >.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) ) )
10 anddi 795 . . . . . . 7  |-  ( ( ( <. x ,  y
>.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )  <-> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
119, 10bitri 183 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
12 disj1 3383 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  <->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
1312biimpi 119 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
141319.21bi 1522 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  F  ->  -.  x  e.  dom  G ) )
15 imnan 664 . . . . . . . . . . 11  |-  ( ( x  e.  dom  F  ->  -.  x  e.  dom  G )  <->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
1614, 15sylib 121 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
17 vex 2663 . . . . . . . . . . . 12  |-  x  e. 
_V
18 vex 2663 . . . . . . . . . . . 12  |-  y  e. 
_V
1917, 18opeldm 4712 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  F  ->  x  e. 
dom  F )
20 vex 2663 . . . . . . . . . . . 12  |-  z  e. 
_V
2117, 20opeldm 4712 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  G  ->  x  e. 
dom  G )
2219, 21anim12i 336 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2316, 22nsyl 602 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )
24 orel2 700 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2523, 24syl 14 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2614con2d 598 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  G  ->  -.  x  e.  dom  F ) )
27 imnan 664 . . . . . . . . . . 11  |-  ( ( x  e.  dom  G  ->  -.  x  e.  dom  F )  <->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2826, 27sylib 121 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2917, 18opeldm 4712 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
3017, 20opeldm 4712 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  F  ->  x  e. 
dom  F )
3129, 30anim12i 336 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( x  e.  dom  G  /\  x  e.  dom  F ) )
3228, 31nsyl 602 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
) )
33 orel1 699 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3432, 33syl 14 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  G  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3525, 34orim12d 760 . . . . . . 7  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3635adantl 275 . . . . . 6  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3711, 36syl5bi 151 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
38 dffun4 5104 . . . . . . . . . 10  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
3938simprbi 273 . . . . . . . . 9  |-  ( Fun 
F  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
403919.21bi 1522 . . . . . . . 8  |-  ( Fun 
F  ->  A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
414019.21bbi 1523 . . . . . . 7  |-  ( Fun 
F  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
42 dffun4 5104 . . . . . . . . . 10  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) ) )
4342simprbi 273 . . . . . . . . 9  |-  ( Fun 
G  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
444319.21bi 1522 . . . . . . . 8  |-  ( Fun 
G  ->  A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
454419.21bbi 1523 . . . . . . 7  |-  ( Fun 
G  ->  ( ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
4641, 45jaao 693 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4746adantr 274 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4837, 47syld 45 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
y  =  z ) )
4948alrimiv 1830 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
5049alrimivv 1831 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
51 dffun4 5104 . 2  |-  ( Fun  ( F  u.  G
)  <->  ( Rel  ( F  u.  G )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) ) )
526, 50, 51sylanbrc 413 1  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 682   A.wal 1314    = wceq 1316    e. wcel 1465    u. cun 3039    i^i cin 3040   (/)c0 3333   <.cop 3500   dom cdm 4509   Rel wrel 4514   Fun wfun 5087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-opab 3960  df-id 4185  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-fun 5095
This theorem is referenced by:  funprg  5143  funtpg  5144  funtp  5146  fnun  5199  fvun1  5455  sbthlem7  6819  sbthlemi8  6820  casefun  6938  caseinj  6942  djufun  6957  djuinj  6959  exmidfodomrlemim  7025  setsfun  11905  setsfun0  11906  strleund  11958  strleun  11959
  Copyright terms: Public domain W3C validator