ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funun Unicode version

Theorem funun 5361
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )

Proof of Theorem funun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5334 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 funrel 5334 . . . . 5  |-  ( Fun 
G  ->  Rel  G )
31, 2anim12i 338 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  F  /\  Rel  G ) )
4 relun 4835 . . . 4  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
53, 4sylibr 134 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  Rel  ( F  u.  G ) )
65adantr 276 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Rel  ( F  u.  G
) )
7 elun 3345 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( F  u.  G
)  <->  ( <. x ,  y >.  e.  F  \/  <. x ,  y
>.  e.  G ) )
8 elun 3345 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( F  u.  G
)  <->  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )
97, 8anbi12i 460 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( <.
x ,  y >.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) ) )
10 anddi 826 . . . . . . 7  |-  ( ( ( <. x ,  y
>.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )  <-> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
119, 10bitri 184 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
12 disj1 3542 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  <->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
1312biimpi 120 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
141319.21bi 1604 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  F  ->  -.  x  e.  dom  G ) )
15 imnan 694 . . . . . . . . . . 11  |-  ( ( x  e.  dom  F  ->  -.  x  e.  dom  G )  <->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
1614, 15sylib 122 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
17 vex 2802 . . . . . . . . . . . 12  |-  x  e. 
_V
18 vex 2802 . . . . . . . . . . . 12  |-  y  e. 
_V
1917, 18opeldm 4925 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  F  ->  x  e. 
dom  F )
20 vex 2802 . . . . . . . . . . . 12  |-  z  e. 
_V
2117, 20opeldm 4925 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  G  ->  x  e. 
dom  G )
2219, 21anim12i 338 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2316, 22nsyl 631 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )
24 orel2 731 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2523, 24syl 14 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2614con2d 627 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  G  ->  -.  x  e.  dom  F ) )
27 imnan 694 . . . . . . . . . . 11  |-  ( ( x  e.  dom  G  ->  -.  x  e.  dom  F )  <->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2826, 27sylib 122 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2917, 18opeldm 4925 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
3017, 20opeldm 4925 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  F  ->  x  e. 
dom  F )
3129, 30anim12i 338 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( x  e.  dom  G  /\  x  e.  dom  F ) )
3228, 31nsyl 631 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
) )
33 orel1 730 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3432, 33syl 14 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  G  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3525, 34orim12d 791 . . . . . . 7  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3635adantl 277 . . . . . 6  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3711, 36biimtrid 152 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
38 dffun4 5328 . . . . . . . . . 10  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
3938simprbi 275 . . . . . . . . 9  |-  ( Fun 
F  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
403919.21bi 1604 . . . . . . . 8  |-  ( Fun 
F  ->  A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
414019.21bbi 1605 . . . . . . 7  |-  ( Fun 
F  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
42 dffun4 5328 . . . . . . . . . 10  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) ) )
4342simprbi 275 . . . . . . . . 9  |-  ( Fun 
G  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
444319.21bi 1604 . . . . . . . 8  |-  ( Fun 
G  ->  A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
454419.21bbi 1605 . . . . . . 7  |-  ( Fun 
G  ->  ( ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
4641, 45jaao 724 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4746adantr 276 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4837, 47syld 45 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
y  =  z ) )
4948alrimiv 1920 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
5049alrimivv 1921 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
51 dffun4 5328 . 2  |-  ( Fun  ( F  u.  G
)  <->  ( Rel  ( F  u.  G )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) ) )
526, 50, 51sylanbrc 417 1  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713   A.wal 1393    = wceq 1395    e. wcel 2200    u. cun 3195    i^i cin 3196   (/)c0 3491   <.cop 3669   dom cdm 4718   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319
This theorem is referenced by:  funprg  5370  funtpg  5371  funtp  5373  fnun  5428  fvun1  5699  sbthlem7  7126  sbthlemi8  7127  casefun  7248  caseinj  7252  djufun  7267  djuinj  7269  exmidfodomrlemim  7375  setsfun  13062  setsfun0  13063  strleund  13131  strleun  13132
  Copyright terms: Public domain W3C validator