| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funun | Unicode version | ||
| Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5287 |
. . . . 5
| |
| 2 | funrel 5287 |
. . . . 5
| |
| 3 | 1, 2 | anim12i 338 |
. . . 4
|
| 4 | relun 4791 |
. . . 4
| |
| 5 | 3, 4 | sylibr 134 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | elun 3313 |
. . . . . . . 8
| |
| 8 | elun 3313 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . 7
|
| 10 | anddi 822 |
. . . . . . 7
| |
| 11 | 9, 10 | bitri 184 |
. . . . . 6
|
| 12 | disj1 3510 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | biimpi 120 |
. . . . . . . . . . . 12
|
| 14 | 13 | 19.21bi 1580 |
. . . . . . . . . . 11
|
| 15 | imnan 691 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | sylib 122 |
. . . . . . . . . 10
|
| 17 | vex 2774 |
. . . . . . . . . . . 12
| |
| 18 | vex 2774 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | opeldm 4880 |
. . . . . . . . . . 11
|
| 20 | vex 2774 |
. . . . . . . . . . . 12
| |
| 21 | 17, 20 | opeldm 4880 |
. . . . . . . . . . 11
|
| 22 | 19, 21 | anim12i 338 |
. . . . . . . . . 10
|
| 23 | 16, 22 | nsyl 629 |
. . . . . . . . 9
|
| 24 | orel2 727 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 14 | con2d 625 |
. . . . . . . . . . 11
|
| 27 | imnan 691 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . 10
|
| 29 | 17, 18 | opeldm 4880 |
. . . . . . . . . . 11
|
| 30 | 17, 20 | opeldm 4880 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | anim12i 338 |
. . . . . . . . . 10
|
| 32 | 28, 31 | nsyl 629 |
. . . . . . . . 9
|
| 33 | orel1 726 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 25, 34 | orim12d 787 |
. . . . . . 7
|
| 36 | 35 | adantl 277 |
. . . . . 6
|
| 37 | 11, 36 | biimtrid 152 |
. . . . 5
|
| 38 | dffun4 5281 |
. . . . . . . . . 10
| |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
|
| 40 | 39 | 19.21bi 1580 |
. . . . . . . 8
|
| 41 | 40 | 19.21bbi 1581 |
. . . . . . 7
|
| 42 | dffun4 5281 |
. . . . . . . . . 10
| |
| 43 | 42 | simprbi 275 |
. . . . . . . . 9
|
| 44 | 43 | 19.21bi 1580 |
. . . . . . . 8
|
| 45 | 44 | 19.21bbi 1581 |
. . . . . . 7
|
| 46 | 41, 45 | jaao 720 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 37, 47 | syld 45 |
. . . 4
|
| 49 | 48 | alrimiv 1896 |
. . 3
|
| 50 | 49 | alrimivv 1897 |
. 2
|
| 51 | dffun4 5281 |
. 2
| |
| 52 | 6, 50, 51 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-fun 5272 |
| This theorem is referenced by: funprg 5323 funtpg 5324 funtp 5326 fnun 5381 fvun1 5644 sbthlem7 7064 sbthlemi8 7065 casefun 7186 caseinj 7190 djufun 7205 djuinj 7207 exmidfodomrlemim 7308 setsfun 12809 setsfun0 12810 strleund 12877 strleun 12878 |
| Copyright terms: Public domain | W3C validator |