ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bbid Unicode version

Theorem necon3bbid 2385
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.)
Hypothesis
Ref Expression
necon3bbid.1  |-  ( ph  ->  ( ps  <->  A  =  B ) )
Assertion
Ref Expression
necon3bbid  |-  ( ph  ->  ( -.  ps  <->  A  =/=  B ) )

Proof of Theorem necon3bbid
StepHypRef Expression
1 necon3bbid.1 . . . 4  |-  ( ph  ->  ( ps  <->  A  =  B ) )
21bicomd 141 . . 3  |-  ( ph  ->  ( A  =  B  <->  ps ) )
32necon3abid 2384 . 2  |-  ( ph  ->  ( A  =/=  B  <->  -. 
ps ) )
43bicomd 141 1  |-  ( ph  ->  ( -.  ps  <->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1353    =/= wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2346
This theorem is referenced by:  necon3bid  2386  eldifsn  3716  prmrp  12112  lgsne0  14010  2sqlem7  14028
  Copyright terms: Public domain W3C validator