Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bbid | Unicode version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 |
Ref | Expression |
---|---|
necon3bbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 | |
2 | 1 | bicomd 140 | . . 3 |
3 | 2 | necon3abid 2379 | . 2 |
4 | 3 | bicomd 140 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1348 wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-ne 2341 |
This theorem is referenced by: necon3bid 2381 eldifsn 3710 prmrp 12099 lgsne0 13733 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |