Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bbid | Unicode version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 |
Ref | Expression |
---|---|
necon3bbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 | |
2 | 1 | bicomd 141 | . . 3 |
3 | 2 | necon3abid 2384 | . 2 |
4 | 3 | bicomd 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 105 wceq 1353 wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-ne 2346 |
This theorem is referenced by: necon3bid 2386 eldifsn 3716 prmrp 12112 lgsne0 14010 2sqlem7 14028 |
Copyright terms: Public domain | W3C validator |