ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem7 Unicode version

Theorem 2sqlem7 14946
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem7  |-  Y  C_  ( S  i^i  NN )
Distinct variable groups:    x, w, y, z    x, S, y, z    x, Y, y
Allowed substitution hints:    S( w)    Y( z, w)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2 simpr 110 . . . . . . 7  |-  ( ( ( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
32reximi 2587 . . . . . 6  |-  ( E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. y  e.  ZZ  z  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
43reximi 2587 . . . . 5  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
5 2sq.1 . . . . . 6  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
652sqlem2 14940 . . . . 5  |-  ( z  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
74, 6sylibr 134 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  S
)
8 1ne0 9018 . . . . . . . . . 10  |-  1  =/=  0
9 gcdeq0 12013 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x  gcd  y )  =  0  <-> 
( x  =  0  /\  y  =  0 ) ) )
109adantr 276 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
11 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x  gcd  y )  =  1 )
1211eqeq1d 2198 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  1  = 
0 ) )
1310, 12bitr3d 190 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  =  0  /\  y  =  0 )  <->  1  =  0 ) )
1413necon3bbid 2400 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( -.  ( x  =  0  /\  y  =  0
)  <->  1  =/=  0
) )
158, 14mpbiri 168 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
x  =  0  /\  y  =  0 ) )
16 zsqcl2 10632 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1716ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e. 
NN0 )
1817nn0red 9261 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e.  RR )
1917nn0ge0d 9263 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( x ^ 2 ) )
20 zsqcl2 10632 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
2120ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e. 
NN0 )
2221nn0red 9261 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e.  RR )
2321nn0ge0d 9263 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( y ^ 2 ) )
24 add20 8462 . . . . . . . . . . 11  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  ( ( y ^ 2 )  e.  RR  /\  0  <_ 
( y ^ 2 ) ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <-> 
( ( x ^
2 )  =  0  /\  ( y ^
2 )  =  0 ) ) )
2518, 19, 22, 23, 24syl22anc 1250 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( (
x ^ 2 )  =  0  /\  (
y ^ 2 )  =  0 ) ) )
26 zcn 9289 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
2726ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  x  e.  CC )
28 zcn 9289 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  CC )
2928ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  y  e.  CC )
30 sqeq0 10617 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  0  <->  x  =  0 ) )
31 sqeq0 10617 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  =  0  <->  y  =  0 ) )
3230, 31bi2anan9 606 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <->  ( x  =  0  /\  y  =  0 ) ) )
3327, 29, 32syl2anc 411 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <-> 
( x  =  0  /\  y  =  0 ) ) )
3425, 33bitrd 188 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
3515, 34mtbird 674 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 )
36 nn0addcl 9242 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  e.  NN0  /\  ( y ^ 2 )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3716, 20, 36syl2an 289 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3837adantr 276 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e. 
NN0 )
39 elnn0 9209 . . . . . . . . 9  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0  <->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  e.  NN  \/  ( ( x ^ 2 )  +  ( y ^
2 ) )  =  0 ) )
4038, 39sylib 122 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN  \/  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 ) )
4135, 40ecased 1360 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN )
42 eleq1 2252 . . . . . . 7  |-  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  (
z  e.  NN  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN ) )
4341, 42syl5ibrcom 157 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  z  e.  NN ) )
4443expimpd 363 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  z  e.  NN ) )
4544rexlimivv 2613 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  NN )
467, 45elind 3335 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  ( S  i^i  NN ) )
4746abssi 3245 . 2  |-  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }  C_  ( S  i^i  NN )
481, 47eqsstri 3202 1  |-  Y  C_  ( S  i^i  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   {cab 2175    =/= wne 2360   E.wrex 2469    i^i cin 3143    C_ wss 3144   class class class wbr 4018    |-> cmpt 4079   ran crn 4645   ` cfv 5235  (class class class)co 5897   CCcc 7840   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    <_ cle 8024   NNcn 8950   2c2 9001   NN0cn0 9207   ZZcz 9284   ^cexp 10553   abscabs 11041    gcd cgcd 11978   ZZ[_i]cgz 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-gz 12405
This theorem is referenced by:  2sqlem8  14948  2sqlem9  14949
  Copyright terms: Public domain W3C validator