ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem7 Unicode version

Theorem 2sqlem7 15713
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem7  |-  Y  C_  ( S  i^i  NN )
Distinct variable groups:    x, w, y, z    x, S, y, z    x, Y, y
Allowed substitution hints:    S( w)    Y( z, w)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2 simpr 110 . . . . . . 7  |-  ( ( ( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
32reximi 2605 . . . . . 6  |-  ( E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. y  e.  ZZ  z  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
43reximi 2605 . . . . 5  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
5 2sq.1 . . . . . 6  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
652sqlem2 15707 . . . . 5  |-  ( z  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
74, 6sylibr 134 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  S
)
8 1ne0 9139 . . . . . . . . . 10  |-  1  =/=  0
9 gcdeq0 12413 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x  gcd  y )  =  0  <-> 
( x  =  0  /\  y  =  0 ) ) )
109adantr 276 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
11 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x  gcd  y )  =  1 )
1211eqeq1d 2216 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  1  = 
0 ) )
1310, 12bitr3d 190 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  =  0  /\  y  =  0 )  <->  1  =  0 ) )
1413necon3bbid 2418 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( -.  ( x  =  0  /\  y  =  0
)  <->  1  =/=  0
) )
158, 14mpbiri 168 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
x  =  0  /\  y  =  0 ) )
16 zsqcl2 10799 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1716ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e. 
NN0 )
1817nn0red 9384 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e.  RR )
1917nn0ge0d 9386 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( x ^ 2 ) )
20 zsqcl2 10799 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
2120ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e. 
NN0 )
2221nn0red 9384 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e.  RR )
2321nn0ge0d 9386 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( y ^ 2 ) )
24 add20 8582 . . . . . . . . . . 11  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  ( ( y ^ 2 )  e.  RR  /\  0  <_ 
( y ^ 2 ) ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <-> 
( ( x ^
2 )  =  0  /\  ( y ^
2 )  =  0 ) ) )
2518, 19, 22, 23, 24syl22anc 1251 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( (
x ^ 2 )  =  0  /\  (
y ^ 2 )  =  0 ) ) )
26 zcn 9412 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
2726ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  x  e.  CC )
28 zcn 9412 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  CC )
2928ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  y  e.  CC )
30 sqeq0 10784 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  0  <->  x  =  0 ) )
31 sqeq0 10784 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  =  0  <->  y  =  0 ) )
3230, 31bi2anan9 606 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <->  ( x  =  0  /\  y  =  0 ) ) )
3327, 29, 32syl2anc 411 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <-> 
( x  =  0  /\  y  =  0 ) ) )
3425, 33bitrd 188 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
3515, 34mtbird 675 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 )
36 nn0addcl 9365 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  e.  NN0  /\  ( y ^ 2 )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3716, 20, 36syl2an 289 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3837adantr 276 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e. 
NN0 )
39 elnn0 9332 . . . . . . . . 9  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0  <->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  e.  NN  \/  ( ( x ^ 2 )  +  ( y ^
2 ) )  =  0 ) )
4038, 39sylib 122 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN  \/  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 ) )
4135, 40ecased 1362 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN )
42 eleq1 2270 . . . . . . 7  |-  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  (
z  e.  NN  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN ) )
4341, 42syl5ibrcom 157 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  z  e.  NN ) )
4443expimpd 363 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  z  e.  NN ) )
4544rexlimivv 2631 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  NN )
467, 45elind 3366 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  ( S  i^i  NN ) )
4746abssi 3276 . 2  |-  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }  C_  ( S  i^i  NN )
481, 47eqsstri 3233 1  |-  Y  C_  ( S  i^i  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193    =/= wne 2378   E.wrex 2487    i^i cin 3173    C_ wss 3174   class class class wbr 4059    |-> cmpt 4121   ran crn 4694   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    <_ cle 8143   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ^cexp 10720   abscabs 11423    gcd cgcd 12389   ZZ[_i]cgz 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-gz 12808
This theorem is referenced by:  2sqlem8  15715  2sqlem9  15716
  Copyright terms: Public domain W3C validator