ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem7 Unicode version

Theorem 2sqlem7 13836
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
Assertion
Ref Expression
2sqlem7  |-  Y  C_  ( S  i^i  NN )
Distinct variable groups:    x, w, y, z    x, S, y, z    x, Y, y
Allowed substitution hints:    S( w)    Y( z, w)

Proof of Theorem 2sqlem7
StepHypRef Expression
1 2sqlem7.2 . 2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2 simpr 109 . . . . . . 7  |-  ( ( ( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
32reximi 2568 . . . . . 6  |-  ( E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. y  e.  ZZ  z  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
43reximi 2568 . . . . 5  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
5 2sq.1 . . . . . 6  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
652sqlem2 13830 . . . . 5  |-  ( z  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
74, 6sylibr 133 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  S
)
8 1ne0 8950 . . . . . . . . . 10  |-  1  =/=  0
9 gcdeq0 11936 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x  gcd  y )  =  0  <-> 
( x  =  0  /\  y  =  0 ) ) )
109adantr 274 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
11 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x  gcd  y )  =  1 )
1211eqeq1d 2180 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  gcd  y )  =  0  <->  1  = 
0 ) )
1310, 12bitr3d 189 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x  =  0  /\  y  =  0 )  <->  1  =  0 ) )
1413necon3bbid 2381 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( -.  ( x  =  0  /\  y  =  0
)  <->  1  =/=  0
) )
158, 14mpbiri 167 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
x  =  0  /\  y  =  0 ) )
16 zsqcl2 10557 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1716ad2antrr 486 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e. 
NN0 )
1817nn0red 9193 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( x ^ 2 )  e.  RR )
1917nn0ge0d 9195 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( x ^ 2 ) )
20 zsqcl2 10557 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
2120ad2antlr 487 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e. 
NN0 )
2221nn0red 9193 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( y ^ 2 )  e.  RR )
2321nn0ge0d 9195 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  0  <_  ( y ^ 2 ) )
24 add20 8397 . . . . . . . . . . 11  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  ( ( y ^ 2 )  e.  RR  /\  0  <_ 
( y ^ 2 ) ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <-> 
( ( x ^
2 )  =  0  /\  ( y ^
2 )  =  0 ) ) )
2518, 19, 22, 23, 24syl22anc 1235 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( (
x ^ 2 )  =  0  /\  (
y ^ 2 )  =  0 ) ) )
26 zcn 9221 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
2726ad2antrr 486 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  x  e.  CC )
28 zcn 9221 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  CC )
2928ad2antlr 487 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  y  e.  CC )
30 sqeq0 10543 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
( x ^ 2 )  =  0  <->  x  =  0 ) )
31 sqeq0 10543 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  =  0  <->  y  =  0 ) )
3230, 31bi2anan9 602 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <->  ( x  =  0  /\  y  =  0 ) ) )
3327, 29, 32syl2anc 409 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  =  0  /\  ( y ^ 2 )  =  0 )  <-> 
( x  =  0  /\  y  =  0 ) ) )
3425, 33bitrd 187 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0  <->  ( x  =  0  /\  y  =  0 ) ) )
3515, 34mtbird 669 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  -.  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 )
36 nn0addcl 9174 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  e.  NN0  /\  ( y ^ 2 )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3716, 20, 36syl2an 287 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
3837adantr 274 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e. 
NN0 )
39 elnn0 9141 . . . . . . . . 9  |-  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0  <->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  e.  NN  \/  ( ( x ^ 2 )  +  ( y ^
2 ) )  =  0 ) )
4038, 39sylib 121 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN  \/  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  0 ) )
4135, 40ecased 1345 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN )
42 eleq1 2234 . . . . . . 7  |-  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  (
z  e.  NN  <->  ( (
x ^ 2 )  +  ( y ^
2 ) )  e.  NN ) )
4341, 42syl5ibrcom 156 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  ( x  gcd  y )  =  1 )  ->  ( z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  z  e.  NN ) )
4443expimpd 361 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  z  e.  NN ) )
4544rexlimivv 2594 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  NN )
467, 45elind 3313 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  ->  z  e.  ( S  i^i  NN ) )
4746abssi 3223 . 2  |-  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }  C_  ( S  i^i  NN )
481, 47eqsstri 3180 1  |-  Y  C_  ( S  i^i  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 704    = wceq 1349    e. wcel 2142   {cab 2157    =/= wne 2341   E.wrex 2450    i^i cin 3121    C_ wss 3122   class class class wbr 3990    |-> cmpt 4051   ran crn 4613   ` cfv 5200  (class class class)co 5857   CCcc 7776   RRcr 7777   0cc0 7778   1c1 7779    + caddc 7781    <_ cle 7959   NNcn 8882   2c2 8933   NN0cn0 9139   ZZcz 9216   ^cexp 10479   abscabs 10965    gcd cgcd 11901   ZZ[_i]cgz 12325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-mulrcl 7877  ax-addcom 7878  ax-mulcom 7879  ax-addass 7880  ax-mulass 7881  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-1rid 7885  ax-0id 7886  ax-rnegex 7887  ax-precex 7888  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-apti 7893  ax-pre-ltadd 7894  ax-pre-mulgt0 7895  ax-pre-mulext 7896  ax-arch 7897  ax-caucvg 7898
This theorem depends on definitions:  df-bi 116  df-stab 827  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-po 4282  df-iso 4283  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-sup 6965  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-reap 8498  df-ap 8505  df-div 8594  df-inn 8883  df-2 8941  df-3 8942  df-4 8943  df-n0 9140  df-z 9217  df-uz 9492  df-q 9583  df-rp 9615  df-fz 9970  df-fzo 10103  df-fl 10230  df-mod 10283  df-seqfrec 10406  df-exp 10480  df-cj 10810  df-re 10811  df-im 10812  df-rsqrt 10966  df-abs 10967  df-dvds 11754  df-gcd 11902  df-gz 12326
This theorem is referenced by:  2sqlem8  13838  2sqlem9  13839
  Copyright terms: Public domain W3C validator