Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifsn | Unicode version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
eldifsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3130 | . 2 | |
2 | elsng 3598 | . . . 4 | |
3 | 2 | necon3bbid 2380 | . . 3 |
4 | 3 | pm5.32i 451 | . 2 |
5 | 1, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wcel 2141 wne 2340 cdif 3118 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-sn 3589 |
This theorem is referenced by: eldifsni 3712 rexdifsn 3715 difsn 3717 fnniniseg2 5619 rexsupp 5620 mpodifsnif 5946 suppssfv 6057 suppssov1 6058 dif1o 6417 fidifsnen 6848 en2eleq 7172 en2other2 7173 elni 7270 divvalap 8591 elnnne0 9149 divfnzn 9580 modfzo0difsn 10351 modsumfzodifsn 10352 hashdifpr 10755 eff2 11643 tanvalap 11671 fzo0dvdseq 11817 oddprmgt2 12088 oddprmdvds 12306 setsslnid 12467 grpinvnzcl 12771 rplogbval 13657 lgsfcl2 13701 lgsval2lem 13705 lgsval3 13713 lgsmod 13721 lgsdirprm 13729 lgsne0 13733 |
Copyright terms: Public domain | W3C validator |