| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | Unicode version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3206 |
. 2
| |
| 2 | elsng 3681 |
. . . 4
| |
| 3 | 2 | necon3bbid 2440 |
. . 3
|
| 4 | 3 | pm5.32i 454 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: eldifsni 3797 rexdifsn 3800 difsn 3805 fnniniseg2 5760 rexsupp 5761 mpodifsnif 6103 suppssfv 6220 suppssov1 6221 dif1o 6592 fidifsnen 7040 en2eleq 7381 en2other2 7382 elni 7503 divvalap 8829 elnnne0 9391 divfnzn 9824 modfzo0difsn 10625 modsumfzodifsn 10626 hashdifpr 11050 eff2 12199 tanvalap 12227 fzo0dvdseq 12376 oddprmgt2 12664 oddprmdvds 12885 4sqlem19 12940 setsslnid 13092 grpinvnzcl 13613 lssneln0 14346 rplogbval 15627 lgsfcl2 15693 lgsval2lem 15697 lgsval3 15705 lgsmod 15713 lgsdirprm 15721 lgsne0 15725 gausslemma2dlem0f 15741 lgsquad2lem2 15769 2lgsoddprm 15800 |
| Copyright terms: Public domain | W3C validator |