| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | Unicode version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 |
. 2
| |
| 2 | elsng 3638 |
. . . 4
| |
| 3 | 2 | necon3bbid 2407 |
. . 3
|
| 4 | 3 | pm5.32i 454 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-sn 3629 |
| This theorem is referenced by: eldifsni 3752 rexdifsn 3755 difsn 3760 fnniniseg2 5688 rexsupp 5689 mpodifsnif 6019 suppssfv 6135 suppssov1 6136 dif1o 6505 fidifsnen 6940 en2eleq 7274 en2other2 7275 elni 7392 divvalap 8718 elnnne0 9280 divfnzn 9712 modfzo0difsn 10504 modsumfzodifsn 10505 hashdifpr 10929 eff2 11862 tanvalap 11890 fzo0dvdseq 12039 oddprmgt2 12327 oddprmdvds 12548 4sqlem19 12603 setsslnid 12755 grpinvnzcl 13274 lssneln0 14006 rplogbval 15265 lgsfcl2 15331 lgsval2lem 15335 lgsval3 15343 lgsmod 15351 lgsdirprm 15359 lgsne0 15363 gausslemma2dlem0f 15379 lgsquad2lem2 15407 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |