Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifsn | Unicode version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
eldifsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3130 | . 2 | |
2 | elsng 3596 | . . . 4 | |
3 | 2 | necon3bbid 2380 | . . 3 |
4 | 3 | pm5.32i 451 | . 2 |
5 | 1, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wcel 2141 wne 2340 cdif 3118 csn 3581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-sn 3587 |
This theorem is referenced by: eldifsni 3710 rexdifsn 3713 difsn 3715 fnniniseg2 5617 rexsupp 5618 mpodifsnif 5944 suppssfv 6055 suppssov1 6056 dif1o 6415 fidifsnen 6846 en2eleq 7165 en2other2 7166 elni 7263 divvalap 8584 elnnne0 9142 divfnzn 9573 modfzo0difsn 10344 modsumfzodifsn 10345 hashdifpr 10748 eff2 11636 tanvalap 11664 fzo0dvdseq 11810 oddprmgt2 12081 oddprmdvds 12299 setsslnid 12460 rplogbval 13622 lgsfcl2 13666 lgsval2lem 13670 lgsval3 13678 lgsmod 13686 lgsdirprm 13694 lgsne0 13698 |
Copyright terms: Public domain | W3C validator |