| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsn | Unicode version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| eldifsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3186 |
. 2
| |
| 2 | elsng 3661 |
. . . 4
| |
| 3 | 2 | necon3bbid 2420 |
. . 3
|
| 4 | 3 | pm5.32i 454 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-v 2781 df-dif 3179 df-sn 3652 |
| This theorem is referenced by: eldifsni 3776 rexdifsn 3779 difsn 3784 fnniniseg2 5731 rexsupp 5732 mpodifsnif 6068 suppssfv 6184 suppssov1 6185 dif1o 6554 fidifsnen 7000 en2eleq 7341 en2other2 7342 elni 7463 divvalap 8789 elnnne0 9351 divfnzn 9784 modfzo0difsn 10584 modsumfzodifsn 10585 hashdifpr 11009 eff2 12157 tanvalap 12185 fzo0dvdseq 12334 oddprmgt2 12622 oddprmdvds 12843 4sqlem19 12898 setsslnid 13050 grpinvnzcl 13571 lssneln0 14303 rplogbval 15584 lgsfcl2 15650 lgsval2lem 15654 lgsval3 15662 lgsmod 15670 lgsdirprm 15678 lgsne0 15682 gausslemma2dlem0f 15698 lgsquad2lem2 15726 2lgsoddprm 15757 |
| Copyright terms: Public domain | W3C validator |