ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsn Unicode version

Theorem eldifsn 3710
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
eldifsn  |-  ( A  e.  ( B  \  { C } )  <->  ( A  e.  B  /\  A  =/= 
C ) )

Proof of Theorem eldifsn
StepHypRef Expression
1 eldif 3130 . 2  |-  ( A  e.  ( B  \  { C } )  <->  ( A  e.  B  /\  -.  A  e.  { C } ) )
2 elsng 3598 . . . 4  |-  ( A  e.  B  ->  ( A  e.  { C } 
<->  A  =  C ) )
32necon3bbid 2380 . . 3  |-  ( A  e.  B  ->  ( -.  A  e.  { C } 
<->  A  =/=  C ) )
43pm5.32i 451 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  { C } )  <->  ( A  e.  B  /\  A  =/= 
C ) )
51, 4bitri 183 1  |-  ( A  e.  ( B  \  { C } )  <->  ( A  e.  B  /\  A  =/= 
C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    e. wcel 2141    =/= wne 2340    \ cdif 3118   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-sn 3589
This theorem is referenced by:  eldifsni  3712  rexdifsn  3715  difsn  3717  fnniniseg2  5619  rexsupp  5620  mpodifsnif  5946  suppssfv  6057  suppssov1  6058  dif1o  6417  fidifsnen  6848  en2eleq  7172  en2other2  7173  elni  7270  divvalap  8591  elnnne0  9149  divfnzn  9580  modfzo0difsn  10351  modsumfzodifsn  10352  hashdifpr  10755  eff2  11643  tanvalap  11671  fzo0dvdseq  11817  oddprmgt2  12088  oddprmdvds  12306  setsslnid  12467  grpinvnzcl  12771  rplogbval  13657  lgsfcl2  13701  lgsval2lem  13705  lgsval3  13713  lgsmod  13721  lgsdirprm  13729  lgsne0  13733
  Copyright terms: Public domain W3C validator