ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrunit Unicode version

Theorem nzrunit 13684
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nzrunit.1  |-  U  =  (Unit `  R )
nzrunit.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
nzrunit  |-  ( ( R  e. NzRing  /\  A  e.  U )  ->  A  =/=  .0.  )

Proof of Theorem nzrunit
StepHypRef Expression
1 eqid 2193 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
2 nzrunit.2 . . . . . 6  |-  .0.  =  ( 0g `  R )
31, 2nzrnz 13678 . . . . 5  |-  ( R  e. NzRing  ->  ( 1r `  R )  =/=  .0.  )
4 nzrring 13679 . . . . . 6  |-  ( R  e. NzRing  ->  R  e.  Ring )
5 nzrunit.1 . . . . . . . 8  |-  U  =  (Unit `  R )
65, 2, 10unit 13625 . . . . . . 7  |-  ( R  e.  Ring  ->  (  .0. 
e.  U  <->  ( 1r `  R )  =  .0.  ) )
76necon3bbid 2404 . . . . . 6  |-  ( R  e.  Ring  ->  ( -.  .0.  e.  U  <->  ( 1r `  R )  =/=  .0.  ) )
84, 7syl 14 . . . . 5  |-  ( R  e. NzRing  ->  ( -.  .0.  e.  U  <->  ( 1r `  R )  =/=  .0.  ) )
93, 8mpbird 167 . . . 4  |-  ( R  e. NzRing  ->  -.  .0.  e.  U )
10 eleq1 2256 . . . . 5  |-  ( A  =  .0.  ->  ( A  e.  U  <->  .0.  e.  U ) )
1110notbid 668 . . . 4  |-  ( A  =  .0.  ->  ( -.  A  e.  U  <->  -.  .0.  e.  U ) )
129, 11syl5ibrcom 157 . . 3  |-  ( R  e. NzRing  ->  ( A  =  .0.  ->  -.  A  e.  U ) )
1312necon2ad 2421 . 2  |-  ( R  e. NzRing  ->  ( A  e.  U  ->  A  =/=  .0.  ) )
1413imp 124 1  |-  ( ( R  e. NzRing  /\  A  e.  U )  ->  A  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   ` cfv 5254   0gc0g 12867   1rcur 13455   Ringcrg 13492  Unitcui 13583  NzRingcnzr 13675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-nzr 13676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator