ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnprm Unicode version

Theorem expnprm 12676
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( A ^ N
)  e.  Prime )

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 9725 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
21simprbi 275 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
32adantl 277 . 2  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  =/=  1 )
4 eluzelz 9657 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
54ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  e.  ZZ )
6 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e. 
Prime )
7 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  A  e.  QQ )
8 prmnn 12432 . . . . . . . . . . . 12  |-  ( ( A ^ N )  e.  Prime  ->  ( A ^ N )  e.  NN )
98adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e.  NN )
109nnne0d 9081 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  =/=  0 )
11 eluz2nn 9687 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
1211ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  e.  NN )
13120expd 10834 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
0 ^ N )  =  0 )
1410, 13neeqtrrd 2406 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  =/=  ( 0 ^ N
) )
15 oveq1 5951 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ N )  =  ( 0 ^ N
) )
1615necon3i 2424 . . . . . . . . 9  |-  ( ( A ^ N )  =/=  ( 0 ^ N )  ->  A  =/=  0 )
1714, 16syl 14 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  A  =/=  0 )
18 pcqcl 12629 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( ( A ^ N )  pCnt  A
)  e.  ZZ )
196, 7, 17, 18syl12anc 1248 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  A )  e.  ZZ )
20 dvdsmul1 12124 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( A ^ N )  pCnt  A
)  e.  ZZ )  ->  N  ||  ( N  x.  ( ( A ^ N )  pCnt  A ) ) )
215, 19, 20syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  ||  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
229nncnd 9050 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e.  CC )
2322exp1d 10813 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
) ^ 1 )  =  ( A ^ N ) )
2423oveq2d 5960 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  ( ( A ^ N )  pCnt  ( A ^ N ) ) )
25 1z 9398 . . . . . . . 8  |-  1  e.  ZZ
26 pcid 12647 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  1  e.  ZZ )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  1 )
276, 25, 26sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  1 )
28 pcexp 12632 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A ^ N
)  pCnt  ( A ^ N ) )  =  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
296, 7, 17, 5, 28syl121anc 1255 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( A ^ N ) )  =  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
3024, 27, 293eqtr3rd 2247 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( N  x.  ( ( A ^ N )  pCnt  A ) )  =  1 )
3121, 30breqtrd 4070 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  ||  1 )
3231ex 115 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A ^ N )  e.  Prime  ->  N  ||  1 ) )
3311adantl 277 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN )
3433nnnn0d 9348 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN0 )
35 dvds1 12164 . . . . 5  |-  ( N  e.  NN0  ->  ( N 
||  1  <->  N  = 
1 ) )
3634, 35syl 14 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  ||  1  <->  N  =  1 ) )
3732, 36sylibd 149 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A ^ N )  e.  Prime  ->  N  =  1 ) )
3837necon3ad 2418 . 2  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  =/=  1  ->  -.  ( A ^ N )  e.  Prime ) )
393, 38mpd 13 1  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( A ^ N
)  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   0cc0 7925   1c1 7926    x. cmul 7930   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   QQcq 9740   ^cexp 10683    || cdvds 12098   Primecprime 12429    pCnt cpc 12607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-prm 12430  df-pc 12608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator