ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnprm Unicode version

Theorem expnprm 12353
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( A ^ N
)  e.  Prime )

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 9606 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
21simprbi 275 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
32adantl 277 . 2  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  =/=  1 )
4 eluzelz 9539 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
54ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  e.  ZZ )
6 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e. 
Prime )
7 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  A  e.  QQ )
8 prmnn 12112 . . . . . . . . . . . 12  |-  ( ( A ^ N )  e.  Prime  ->  ( A ^ N )  e.  NN )
98adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e.  NN )
109nnne0d 8966 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  =/=  0 )
11 eluz2nn 9568 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
1211ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  e.  NN )
13120expd 10672 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
0 ^ N )  =  0 )
1410, 13neeqtrrd 2377 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  =/=  ( 0 ^ N
) )
15 oveq1 5884 . . . . . . . . . 10  |-  ( A  =  0  ->  ( A ^ N )  =  ( 0 ^ N
) )
1615necon3i 2395 . . . . . . . . 9  |-  ( ( A ^ N )  =/=  ( 0 ^ N )  ->  A  =/=  0 )
1714, 16syl 14 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  A  =/=  0 )
18 pcqcl 12308 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( ( A ^ N )  pCnt  A
)  e.  ZZ )
196, 7, 17, 18syl12anc 1236 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  A )  e.  ZZ )
20 dvdsmul1 11822 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( A ^ N )  pCnt  A
)  e.  ZZ )  ->  N  ||  ( N  x.  ( ( A ^ N )  pCnt  A ) ) )
215, 19, 20syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  ||  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
229nncnd 8935 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( A ^ N )  e.  CC )
2322exp1d 10651 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
) ^ 1 )  =  ( A ^ N ) )
2423oveq2d 5893 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  ( ( A ^ N )  pCnt  ( A ^ N ) ) )
25 1z 9281 . . . . . . . 8  |-  1  e.  ZZ
26 pcid 12325 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  1  e.  ZZ )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  1 )
276, 25, 26sylancl 413 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( ( A ^ N ) ^
1 ) )  =  1 )
28 pcexp 12311 . . . . . . . 8  |-  ( ( ( A ^ N
)  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A ^ N
)  pCnt  ( A ^ N ) )  =  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
296, 7, 17, 5, 28syl121anc 1243 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  (
( A ^ N
)  pCnt  ( A ^ N ) )  =  ( N  x.  (
( A ^ N
)  pCnt  A )
) )
3024, 27, 293eqtr3rd 2219 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  ( N  x.  ( ( A ^ N )  pCnt  A ) )  =  1 )
3121, 30breqtrd 4031 . . . . 5  |-  ( ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  /\  ( A ^ N )  e.  Prime )  ->  N  ||  1 )
3231ex 115 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A ^ N )  e.  Prime  ->  N  ||  1 ) )
3311adantl 277 . . . . . 6  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN )
3433nnnn0d 9231 . . . . 5  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN0 )
35 dvds1 11861 . . . . 5  |-  ( N  e.  NN0  ->  ( N 
||  1  <->  N  = 
1 ) )
3634, 35syl 14 . . . 4  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  ||  1  <->  N  =  1 ) )
3732, 36sylibd 149 . . 3  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A ^ N )  e.  Prime  ->  N  =  1 ) )
3837necon3ad 2389 . 2  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  =/=  1  ->  -.  ( A ^ N )  e.  Prime ) )
393, 38mpd 13 1  |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( A ^ N
)  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    x. cmul 7818   NNcn 8921   2c2 8972   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   QQcq 9621   ^cexp 10521    || cdvds 11796   Primecprime 12109    pCnt cpc 12286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator