ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq2 Unicode version

Theorem neleq2 2475
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq2  |-  ( A  =  B  ->  ( C  e/  A  <->  C  e/  B ) )

Proof of Theorem neleq2
StepHypRef Expression
1 eleq2 2268 . . 3  |-  ( A  =  B  ->  ( C  e.  A  <->  C  e.  B ) )
21notbid 668 . 2  |-  ( A  =  B  ->  ( -.  C  e.  A  <->  -.  C  e.  B ) )
3 df-nel 2471 . 2  |-  ( C  e/  A  <->  -.  C  e.  A )
4 df-nel 2471 . 2  |-  ( C  e/  B  <->  -.  C  e.  B )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( C  e/  A  <->  C  e/  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1372    e. wcel 2175    e/ wnel 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200  df-nel 2471
This theorem is referenced by:  neleq12d  2476
  Copyright terms: Public domain W3C validator