ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq1 Unicode version

Theorem neleq1 2439
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq1  |-  ( A  =  B  ->  ( A  e/  C  <->  B  e/  C ) )

Proof of Theorem neleq1
StepHypRef Expression
1 eleq1 2233 . . 3  |-  ( A  =  B  ->  ( A  e.  C  <->  B  e.  C ) )
21notbid 662 . 2  |-  ( A  =  B  ->  ( -.  A  e.  C  <->  -.  B  e.  C ) )
3 df-nel 2436 . 2  |-  ( A  e/  C  <->  -.  A  e.  C )
4 df-nel 2436 . 2  |-  ( B  e/  C  <->  -.  B  e.  C )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( A  e/  C  <->  B  e/  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141    e/ wnel 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-nel 2436
This theorem is referenced by:  neleq12d  2441  ruALT  4533
  Copyright terms: Public domain W3C validator