ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq1 Unicode version

Theorem neleq1 2475
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq1  |-  ( A  =  B  ->  ( A  e/  C  <->  B  e/  C ) )

Proof of Theorem neleq1
StepHypRef Expression
1 eleq1 2268 . . 3  |-  ( A  =  B  ->  ( A  e.  C  <->  B  e.  C ) )
21notbid 669 . 2  |-  ( A  =  B  ->  ( -.  A  e.  C  <->  -.  B  e.  C ) )
3 df-nel 2472 . 2  |-  ( A  e/  C  <->  -.  A  e.  C )
4 df-nel 2472 . 2  |-  ( B  e/  C  <->  -.  B  e.  C )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( A  e/  C  <->  B  e/  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176    e/ wnel 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201  df-nel 2472
This theorem is referenced by:  neleq12d  2477  ruALT  4599
  Copyright terms: Public domain W3C validator