ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnel Unicode version

Theorem nfnel 2480
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1  |-  F/_ x A
nfnel.2  |-  F/_ x B
Assertion
Ref Expression
nfnel  |-  F/ x  A  e/  B

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2474 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
2 nfnel.1 . . . 4  |-  F/_ x A
3 nfnel.2 . . . 4  |-  F/_ x B
42, 3nfel 2359 . . 3  |-  F/ x  A  e.  B
54nfn 1682 . 2  |-  F/ x  -.  A  e.  B
61, 5nfxfr 1498 1  |-  F/ x  A  e/  B
Colors of variables: wff set class
Syntax hints:   -. wn 3   F/wnf 1484    e. wcel 2178   F/_wnfc 2337    e/ wnel 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-nel 2474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator