ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnel Unicode version

Theorem nfnel 2469
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfnel.1  |-  F/_ x A
nfnel.2  |-  F/_ x B
Assertion
Ref Expression
nfnel  |-  F/ x  A  e/  B

Proof of Theorem nfnel
StepHypRef Expression
1 df-nel 2463 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
2 nfnel.1 . . . 4  |-  F/_ x A
3 nfnel.2 . . . 4  |-  F/_ x B
42, 3nfel 2348 . . 3  |-  F/ x  A  e.  B
54nfn 1672 . 2  |-  F/ x  -.  A  e.  B
61, 5nfxfr 1488 1  |-  F/ x  A  e/  B
Colors of variables: wff set class
Syntax hints:   -. wn 3   F/wnf 1474    e. wcel 2167   F/_wnfc 2326    e/ wnel 2462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator