| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neleqtrrd | Unicode version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neleqtrrd.1 |
|
| neleqtrrd.2 |
|
| Ref | Expression |
|---|---|
| neleqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrrd.1 |
. 2
| |
| 2 | neleqtrrd.2 |
. . 3
| |
| 3 | 2 | eleq2d 2266 |
. 2
|
| 4 | 1, 3 | mtbird 674 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 zfz1isolemiso 10931 wrdlndm 10952 |
| Copyright terms: Public domain | W3C validator |