Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neleqtrrd | GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2240 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) |
4 | 1, 3 | mtbird 668 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 zfz1isolemiso 10774 |
Copyright terms: Public domain | W3C validator |