ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucaccv Unicode version

Theorem tfr1onlemsucaccv 6060
Description: Lemma for tfr1on 6069. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlemsucaccv.yx  |-  ( ph  ->  Y  e.  X )
tfr1onlemsucaccv.zy  |-  ( ph  ->  z  e.  Y )
tfr1onlemsucaccv.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlemsucaccv.gfn  |-  ( ph  ->  g  Fn  z )
tfr1onlemsucaccv.gacc  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfr1onlemsucaccv  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  A
)
Distinct variable groups:    f, G, x, y    f, X, x   
f, g, x, y    ph, f, x    z, f, x, y
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    F( x, y, z, f, g)    G( z, g)    X( y, z, g)    Y( x, y, z, f, g)

Proof of Theorem tfr1onlemsucaccv
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4203 . . . . 5  |-  ( x  =  z  ->  suc  x  =  suc  z )
21eleq1d 2153 . . . 4  |-  ( x  =  z  ->  ( suc  x  e.  X  <->  suc  z  e.  X ) )
3 tfr1onlemsucaccv.u . . . . 5  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
43ralrimiva 2442 . . . 4  |-  ( ph  ->  A. x  e.  U. X  suc  x  e.  X
)
5 tfr1onlemsucaccv.zy . . . . 5  |-  ( ph  ->  z  e.  Y )
6 tfr1onlemsucaccv.yx . . . . 5  |-  ( ph  ->  Y  e.  X )
7 elunii 3641 . . . . 5  |-  ( ( z  e.  Y  /\  Y  e.  X )  ->  z  e.  U. X
)
85, 6, 7syl2anc 403 . . . 4  |-  ( ph  ->  z  e.  U. X
)
92, 4, 8rspcdva 2720 . . 3  |-  ( ph  ->  suc  z  e.  X
)
10 tfr1on.f . . . 4  |-  F  = recs ( G )
11 tfr1on.g . . . 4  |-  ( ph  ->  Fun  G )
12 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
13 tfr1on.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
14 tfr1onlemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
155, 6jca 300 . . . . 5  |-  ( ph  ->  ( z  e.  Y  /\  Y  e.  X
) )
16 ordtr1 4189 . . . . 5  |-  ( Ord 
X  ->  ( (
z  e.  Y  /\  Y  e.  X )  ->  z  e.  X ) )
1712, 15, 16sylc 61 . . . 4  |-  ( ph  ->  z  e.  X )
18 tfr1onlemsucaccv.gfn . . . 4  |-  ( ph  ->  g  Fn  z )
19 tfr1onlemsucaccv.gacc . . . 4  |-  ( ph  ->  g  e.  A )
2010, 11, 12, 13, 14, 17, 18, 19tfr1onlemsucfn 6059 . . 3  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  suc  z )
21 vex 2618 . . . . . 6  |-  u  e. 
_V
2221elsuc 4207 . . . . 5  |-  ( u  e.  suc  z  <->  ( u  e.  z  \/  u  =  z ) )
23 vex 2618 . . . . . . . . . . 11  |-  g  e. 
_V
2414tfr1onlem3ag 6056 . . . . . . . . . . 11  |-  ( g  e.  _V  ->  (
g  e.  A  <->  E. v  e.  X  ( g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) ) )
2523, 24ax-mp 7 . . . . . . . . . 10  |-  ( g  e.  A  <->  E. v  e.  X  ( g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
2619, 25sylib 120 . . . . . . . . 9  |-  ( ph  ->  E. v  e.  X  ( g  Fn  v  /\  A. u  e.  v  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) ) )
27 simprrr 507 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  X  /\  (
g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) ) )  ->  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u ) ) )
28 simprrl 506 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  X  /\  (
g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) ) )  ->  g  Fn  v )
2918adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  X  /\  (
g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) ) )  ->  g  Fn  z )
30 fndmu 5080 . . . . . . . . . . . 12  |-  ( ( g  Fn  v  /\  g  Fn  z )  ->  v  =  z )
3128, 29, 30syl2anc 403 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  X  /\  (
g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) ) )  ->  v  =  z )
3231raleqdv 2564 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  X  /\  (
g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) ) )  ->  ( A. u  e.  v  (
g `  u )  =  ( G `  ( g  |`  u
) )  <->  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
3327, 32mpbid 145 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  X  /\  (
g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( G `  ( g  |`  u
) ) ) ) )  ->  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) )
3426, 33rexlimddv 2489 . . . . . . . 8  |-  ( ph  ->  A. u  e.  z  ( g `  u
)  =  ( G `
 ( g  |`  u ) ) )
3534r19.21bi 2457 . . . . . . 7  |-  ( (
ph  /\  u  e.  z )  ->  (
g `  u )  =  ( G `  ( g  |`  u
) ) )
36 ordelon 4184 . . . . . . . . . . . . 13  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
3712, 17, 36syl2anc 403 . . . . . . . . . . . 12  |-  ( ph  ->  z  e.  On )
38 onelon 4185 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  u  e.  z )  ->  u  e.  On )
3937, 38sylan 277 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  z )  ->  u  e.  On )
40 eloni 4176 . . . . . . . . . . 11  |-  ( u  e.  On  ->  Ord  u )
41 ordirr 4331 . . . . . . . . . . 11  |-  ( Ord  u  ->  -.  u  e.  u )
4239, 40, 413syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  z )  ->  -.  u  e.  u )
43 elequ2 1645 . . . . . . . . . . . 12  |-  ( z  =  u  ->  (
u  e.  z  <->  u  e.  u ) )
4443biimpcd 157 . . . . . . . . . . 11  |-  ( u  e.  z  ->  (
z  =  u  ->  u  e.  u )
)
4544adantl 271 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  z )  ->  (
z  =  u  ->  u  e.  u )
)
4642, 45mtod 622 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  z )  ->  -.  z  =  u )
4746neqned 2258 . . . . . . . 8  |-  ( (
ph  /\  u  e.  z )  ->  z  =/=  u )
48 fvunsng 5454 . . . . . . . 8  |-  ( ( u  e.  _V  /\  z  =/=  u )  -> 
( ( g  u. 
{ <. z ,  ( G `  g )
>. } ) `  u
)  =  ( g `
 u ) )
4921, 47, 48sylancr 405 . . . . . . 7  |-  ( (
ph  /\  u  e.  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  u
)  =  ( g `
 u ) )
50 eloni 4176 . . . . . . . . . . . 12  |-  ( z  e.  On  ->  Ord  z )
5137, 50syl 14 . . . . . . . . . . 11  |-  ( ph  ->  Ord  z )
52 ordelss 4180 . . . . . . . . . . 11  |-  ( ( Ord  z  /\  u  e.  z )  ->  u  C_  z )
5351, 52sylan 277 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  z )  ->  u  C_  z )
54 resabs1 4709 . . . . . . . . . 10  |-  ( u 
C_  z  ->  (
( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  |`  z
)  |`  u )  =  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  |`  u
) )
5553, 54syl 14 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  z )  ->  (
( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  |`  z
)  |`  u )  =  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  |`  u
) )
56 ordirr 4331 . . . . . . . . . . . . 13  |-  ( Ord  z  ->  -.  z  e.  z )
5751, 56syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  -.  z  e.  z )
58 fsnunres 5461 . . . . . . . . . . . 12  |-  ( ( g  Fn  z  /\  -.  z  e.  z
)  ->  ( (
g  u.  { <. z ,  ( G `  g ) >. } )  |`  z )  =  g )
5918, 57, 58syl2anc 403 . . . . . . . . . . 11  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  |`  z
)  =  g )
6059reseq1d 4680 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  z )  |`  u
)  =  ( g  |`  u ) )
6160adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  z )  ->  (
( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  |`  z
)  |`  u )  =  ( g  |`  u
) )
6255, 61eqtr3d 2119 . . . . . . . 8  |-  ( (
ph  /\  u  e.  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
)  =  ( g  |`  u ) )
6362fveq2d 5272 . . . . . . 7  |-  ( (
ph  /\  u  e.  z )  ->  ( G `  ( (
g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) )  =  ( G `  (
g  |`  u ) ) )
6435, 49, 633eqtr4d 2127 . . . . . 6  |-  ( (
ph  /\  u  e.  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) )
65 fneq2 5068 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
f  Fn  x  <->  f  Fn  z ) )
6665imbi1d 229 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( f  Fn  z  -> 
( G `  f
)  e.  _V )
) )
6766albidv 1749 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) 
<-> 
A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) ) )
68133expia 1143 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
6968alrimiv 1799 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
7069ralrimiva 2442 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  X  A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) )
7167, 70, 17rspcdva 2720 . . . . . . . . . 10  |-  ( ph  ->  A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) )
72 fneq1 5067 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f  Fn  z  <->  g  Fn  z ) )
73 fveq2 5268 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
7473eleq1d 2153 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
7572, 74imbi12d 232 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f  Fn  z  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
7675spv 1785 . . . . . . . . . 10  |-  ( A. f ( f  Fn  z  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  z  ->  ( G `  g )  e.  _V ) )
7771, 18, 76sylc 61 . . . . . . . . 9  |-  ( ph  ->  ( G `  g
)  e.  _V )
78 fndm 5078 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
7918, 78syl 14 . . . . . . . . . 10  |-  ( ph  ->  dom  g  =  z )
8057, 79neleqtrrd 2183 . . . . . . . . 9  |-  ( ph  ->  -.  z  e.  dom  g )
81 fsnunfv 5460 . . . . . . . . 9  |-  ( ( z  e.  Y  /\  ( G `  g )  e.  _V  /\  -.  z  e.  dom  g )  ->  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 z )  =  ( G `  g
) )
825, 77, 80, 81syl3anc 1172 . . . . . . . 8  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } ) `  z
)  =  ( G `
 g ) )
8382adantr 270 . . . . . . 7  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  z
)  =  ( G `
 g ) )
84 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  u  =  z )  ->  u  =  z )
8584fveq2d 5272 . . . . . . 7  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  u
)  =  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 z ) )
86 reseq2 4676 . . . . . . . . 9  |-  ( u  =  z  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
)  =  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  z ) )
8786, 59sylan9eqr 2139 . . . . . . . 8  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
)  =  g )
8887fveq2d 5272 . . . . . . 7  |-  ( (
ph  /\  u  =  z )  ->  ( G `  ( (
g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) )  =  ( G `  g
) )
8983, 85, 883eqtr4d 2127 . . . . . 6  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) )
9064, 89jaodan 744 . . . . 5  |-  ( (
ph  /\  ( u  e.  z  \/  u  =  z ) )  ->  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 u )  =  ( G `  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
) ) )
9122, 90sylan2b 281 . . . 4  |-  ( (
ph  /\  u  e.  suc  z )  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) )
9291ralrimiva 2442 . . 3  |-  ( ph  ->  A. u  e.  suc  z ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 u )  =  ( G `  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
) ) )
93 fneq2 5068 . . . . 5  |-  ( w  =  suc  z  -> 
( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  w  <->  ( g  u.  { <. z ,  ( G `  g ) >. } )  Fn  suc  z ) )
94 raleq 2558 . . . . 5  |-  ( w  =  suc  z  -> 
( A. u  e.  w  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 u )  =  ( G `  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
) )  <->  A. u  e.  suc  z ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 u )  =  ( G `  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
) ) ) )
9593, 94anbi12d 457 . . . 4  |-  ( w  =  suc  z  -> 
( ( ( g  u.  { <. z ,  ( G `  g ) >. } )  Fn  w  /\  A. u  e.  w  (
( g  u.  { <. z ,  ( G `
 g ) >. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) )  <-> 
( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  suc  z  /\  A. u  e. 
suc  z ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 u )  =  ( G `  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
) ) ) ) )
9695rspcev 2715 . . 3  |-  ( ( suc  z  e.  X  /\  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  suc  z  /\  A. u  e. 
suc  z ( ( g  u.  { <. z ,  ( G `  g ) >. } ) `
 u )  =  ( G `  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  |`  u
) ) ) )  ->  E. w  e.  X  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) ) )
979, 20, 92, 96syl12anc 1170 . 2  |-  ( ph  ->  E. w  e.  X  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) ) )
98 vex 2618 . . . . . 6  |-  z  e. 
_V
99 opexg 4029 . . . . . 6  |-  ( ( z  e.  _V  /\  ( G `  g )  e.  _V )  ->  <. z ,  ( G `
 g ) >.  e.  _V )
10098, 77, 99sylancr 405 . . . . 5  |-  ( ph  -> 
<. z ,  ( G `
 g ) >.  e.  _V )
101 snexg 3993 . . . . 5  |-  ( <.
z ,  ( G `
 g ) >.  e.  _V  ->  { <. z ,  ( G `  g ) >. }  e.  _V )
102100, 101syl 14 . . . 4  |-  ( ph  ->  { <. z ,  ( G `  g )
>. }  e.  _V )
103 unexg 4242 . . . 4  |-  ( ( g  e.  _V  /\  {
<. z ,  ( G `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  _V )
10423, 102, 103sylancr 405 . . 3  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  _V )
10514tfr1onlem3ag 6056 . . 3  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  _V  ->  (
( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  A  <->  E. w  e.  X  ( ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) ) ) )
106104, 105syl 14 . 2  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  A  <->  E. w  e.  X  ( ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( G `  g )
>. } ) `  u
)  =  ( G `
 ( ( g  u.  { <. z ,  ( G `  g ) >. } )  |`  u ) ) ) ) )
10797, 106mpbird 165 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    /\ w3a 922   A.wal 1285    = wceq 1287    e. wcel 1436   {cab 2071    =/= wne 2251   A.wral 2355   E.wrex 2356   _Vcvv 2615    u. cun 2986    C_ wss 2988   {csn 3431   <.cop 3434   U.cuni 3636   Ord word 4163   Oncon0 4164   suc csuc 4166   dom cdm 4411    |` cres 4413   Fun wfun 4975    Fn wfn 4976   ` cfv 4981  recscrecs 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-suc 4172  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-res 4423  df-iota 4946  df-fun 4983  df-fn 4984  df-fv 4989
This theorem is referenced by:  tfr1onlembacc  6061  tfr1onlemres  6068
  Copyright terms: Public domain W3C validator