ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolemiso Unicode version

Theorem zfz1isolemiso 10209
Description: Lemma for zfz1iso 10211. Adding one element to the order isomorphism. (Contributed by Jim Kingdon, 8-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolemiso.xf  |-  ( ph  ->  X  e.  Fin )
zfz1isolemiso.xz  |-  ( ph  ->  X  C_  ZZ )
zfz1isolemiso.mx  |-  ( ph  ->  M  e.  X )
zfz1isolemiso.m  |-  ( ph  ->  A. z  e.  X  z  <_  M )
zfz1isolemiso.g  |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1 ... ( `  ( X  \  { M } ) ) ) ,  ( X  \  { M } ) ) )
zfz1isolemiso.a  |-  ( ph  ->  A  e.  ( 1 ... ( `  X
) ) )
zfz1isolemiso.b  |-  ( ph  ->  B  e.  ( 1 ... ( `  X
) ) )
Assertion
Ref Expression
zfz1isolemiso  |-  ( ph  ->  ( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A )  <  (
( G  u.  { <. ( `  X ) ,  M >. } ) `  B ) ) )
Distinct variable groups:    z, A    z, B    z, G    z, M    z, X
Allowed substitution hint:    ph( z)

Proof of Theorem zfz1isolemiso
StepHypRef Expression
1 zfz1isolemiso.g . . . . . 6  |-  ( ph  ->  G  Isom  <  ,  <  ( ( 1 ... ( `  ( X  \  { M } ) ) ) ,  ( X  \  { M } ) ) )
21ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  G  Isom  <  ,  <  ( ( 1 ... ( `  ( X  \  { M }
) ) ) ,  ( X  \  { M } ) ) )
3 simplr 497 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )
4 simpr 108 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )
5 isorel 5569 . . . . 5  |-  ( ( G  Isom  <  ,  <  ( ( 1 ... ( `  ( X  \  { M } ) ) ) ,  ( X  \  { M } ) )  /\  ( A  e.  ( 1 ... ( `  ( X  \  { M } ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) ) )  ->  ( A  <  B  <->  ( G `  A )  <  ( G `  B )
) )
62, 3, 4, 5syl12anc 1172 . . . 4  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( A  <  B  <->  ( G `  A )  <  ( G `  B )
) )
7 zfz1isolemiso.a . . . . . . . 8  |-  ( ph  ->  A  e.  ( 1 ... ( `  X
) ) )
87adantr 270 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A  e.  ( 1 ... ( `  X ) ) )
9 elfzelz 9409 . . . . . . . . . . 11  |-  ( A  e.  ( 1 ... ( `  X )
)  ->  A  e.  ZZ )
107, 9syl 14 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ZZ )
1110zred 8838 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1211adantr 270 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A  e.  RR )
13 zfz1isolemiso.xf . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  Fin )
14 hashcl 10154 . . . . . . . . . . . . 13  |-  ( X  e.  Fin  ->  ( `  X )  e.  NN0 )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( `  X )  e.  NN0 )
1615nn0red 8697 . . . . . . . . . . 11  |-  ( ph  ->  ( `  X )  e.  RR )
17 peano2rem 7728 . . . . . . . . . . 11  |-  ( ( `  X )  e.  RR  ->  ( ( `  X
)  -  1 )  e.  RR )
1816, 17syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( ( `  X
)  -  1 )  e.  RR )
1918adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( `  X )  -  1 )  e.  RR )
2016adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( `  X
)  e.  RR )
21 elfzle2 9411 . . . . . . . . . . 11  |-  ( A  e.  ( 1 ... ( `  ( X  \  { M } ) ) )  ->  A  <_  ( `  ( X  \  { M } ) ) )
2221adantl 271 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A  <_  ( `  ( X  \  { M } ) ) )
23 zfz1isolemiso.mx . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  X )
24 hashdifsn 10192 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  M  e.  X )  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
2513, 23, 24syl2anc 403 . . . . . . . . . . 11  |-  ( ph  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
2625adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( `  ( X  \  { M }
) )  =  ( ( `  X )  -  1 ) )
2722, 26breqtrd 3861 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A  <_  ( ( `  X )  -  1 ) )
2820ltm1d 8365 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( `  X )  -  1 )  <  ( `  X
) )
2912, 19, 20, 27, 28lelttrd 7587 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A  <  ( `  X ) )
3012, 29gtned 7576 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( `  X
)  =/=  A )
31 fvunsng 5475 . . . . . . 7  |-  ( ( A  e.  ( 1 ... ( `  X
) )  /\  ( `  X )  =/=  A
)  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  ( G `
 A ) )
328, 30, 31syl2anc 403 . . . . . 6  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  ( G `
 A ) )
3332adantr 270 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  ( G `
 A ) )
34 zfz1isolemiso.b . . . . . . 7  |-  ( ph  ->  B  e.  ( 1 ... ( `  X
) ) )
3534ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  B  e.  ( 1 ... ( `  X ) ) )
36 elfzelz 9409 . . . . . . . . . 10  |-  ( B  e.  ( 1 ... ( `  X )
)  ->  B  e.  ZZ )
3734, 36syl 14 . . . . . . . . 9  |-  ( ph  ->  B  e.  ZZ )
3837zred 8838 . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
3938ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  B  e.  RR )
4018ad2antrr 472 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( `  X )  -  1 )  e.  RR )
4116ad2antrr 472 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( `  X
)  e.  RR )
42 elfzle2 9411 . . . . . . . . . 10  |-  ( B  e.  ( 1 ... ( `  ( X  \  { M } ) ) )  ->  B  <_  ( `  ( X  \  { M } ) ) )
4342adantl 271 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  B  <_  ( `  ( X  \  { M } ) ) )
4425ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( `  ( X  \  { M }
) )  =  ( ( `  X )  -  1 ) )
4543, 44breqtrd 3861 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  B  <_  ( ( `  X )  -  1 ) )
4616ltm1d 8365 . . . . . . . . 9  |-  ( ph  ->  ( ( `  X
)  -  1 )  <  ( `  X )
)
4746ad2antrr 472 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( `  X )  -  1 )  <  ( `  X
) )
4839, 40, 41, 45, 47lelttrd 7587 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  B  <  ( `  X ) )
4939, 48gtned 7576 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( `  X
)  =/=  B )
50 fvunsng 5475 . . . . . 6  |-  ( ( B  e.  ( 1 ... ( `  X
) )  /\  ( `  X )  =/=  B
)  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  =  ( G `
 B ) )
5135, 49, 50syl2anc 403 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  =  ( G `
 B ) )
5233, 51breq12d 3850 . . . 4  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( (
( G  u.  { <. ( `  X ) ,  M >. } ) `  A )  <  (
( G  u.  { <. ( `  X ) ,  M >. } ) `  B )  <->  ( G `  A )  <  ( G `  B )
) )
536, 52bitr4d 189 . . 3  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) ) )
5429adantr 270 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  ->  A  <  ( `  X )
)
55 elsni 3459 . . . . . 6  |-  ( B  e.  { ( `  X
) }  ->  B  =  ( `  X )
)
5655adantl 271 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  ->  B  =  ( `  X
) )
5754, 56breqtrrd 3863 . . . 4  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  ->  A  <  B )
58 isof1o 5568 . . . . . . . . . . . . 13  |-  ( G 
Isom  <  ,  <  (
( 1 ... ( `  ( X  \  { M } ) ) ) ,  ( X  \  { M } ) )  ->  G : ( 1 ... ( `  ( X  \  { M }
) ) ) -1-1-onto-> ( X 
\  { M }
) )
591, 58syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  G : ( 1 ... ( `  ( X  \  { M }
) ) ) -1-1-onto-> ( X 
\  { M }
) )
60 f1of 5237 . . . . . . . . . . . 12  |-  ( G : ( 1 ... ( `  ( X  \  { M } ) ) ) -1-1-onto-> ( X  \  { M } )  ->  G : ( 1 ... ( `  ( X  \  { M } ) ) ) --> ( X 
\  { M }
) )
6159, 60syl 14 . . . . . . . . . . 11  |-  ( ph  ->  G : ( 1 ... ( `  ( X  \  { M }
) ) ) --> ( X  \  { M } ) )
6261ffvelrnda 5418 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( G `  A )  e.  ( X  \  { M } ) )
6362eldifbd 3009 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  -.  ( G `  A )  e.  { M } )
64 elsn2g 3472 . . . . . . . . . . 11  |-  ( M  e.  X  ->  (
( G `  A
)  e.  { M } 
<->  ( G `  A
)  =  M ) )
6523, 64syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( ( G `  A )  e.  { M }  <->  ( G `  A )  =  M ) )
6665adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G `  A )  e.  { M }  <->  ( G `  A )  =  M ) )
6763, 66mtbid 632 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  -.  ( G `  A )  =  M )
68 breq1 3840 . . . . . . . . . 10  |-  ( z  =  ( G `  A )  ->  (
z  <_  M  <->  ( G `  A )  <_  M
) )
69 zfz1isolemiso.m . . . . . . . . . . 11  |-  ( ph  ->  A. z  e.  X  z  <_  M )
7069adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  A. z  e.  X  z  <_  M )
7162eldifad 3008 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( G `  A )  e.  X
)
7268, 70, 71rspcdva 2727 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( G `  A )  <_  M
)
73 zfz1isolemiso.xz . . . . . . . . . . . 12  |-  ( ph  ->  X  C_  ZZ )
7473adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  X  C_  ZZ )
7574, 71sseldd 3024 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( G `  A )  e.  ZZ )
7673, 23sseldd 3024 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
7776adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  M  e.  ZZ )
78 zleloe 8767 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( G `  A )  <_  M  <->  ( ( G `  A
)  <  M  \/  ( G `  A )  =  M ) ) )
7975, 77, 78syl2anc 403 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G `  A )  <_  M  <->  ( ( G `
 A )  < 
M  \/  ( G `
 A )  =  M ) ) )
8072, 79mpbid 145 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G `  A )  <  M  \/  ( G `
 A )  =  M ) )
8167, 80ecased 1285 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( G `  A )  <  M
)
8215nn0zd 8836 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( `  X )  e.  ZZ )
83 peano2zm 8758 . . . . . . . . . . . . . . 15  |-  ( ( `  X )  e.  ZZ  ->  ( ( `  X
)  -  1 )  e.  ZZ )
8482, 83syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( `  X
)  -  1 )  e.  ZZ )
85 zltnle 8766 . . . . . . . . . . . . . 14  |-  ( ( ( ( `  X
)  -  1 )  e.  ZZ  /\  ( `  X )  e.  ZZ )  ->  ( ( ( `  X )  -  1 )  <  ( `  X
)  <->  -.  ( `  X
)  <_  ( ( `  X )  -  1 ) ) )
8684, 82, 85syl2anc 403 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( `  X
)  -  1 )  <  ( `  X )  <->  -.  ( `  X )  <_  ( ( `  X
)  -  1 ) ) )
8746, 86mpbid 145 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( `  X
)  <_  ( ( `  X )  -  1 ) )
8825breq2d 3849 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( `  X
)  <_  ( `  ( X  \  { M }
) )  <->  ( `  X
)  <_  ( ( `  X )  -  1 ) ) )
8987, 88mtbird 633 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( `  X
)  <_  ( `  ( X  \  { M }
) ) )
90 elfzle2 9411 . . . . . . . . . . 11  |-  ( ( `  X )  e.  ( 1 ... ( `  ( X  \  { M }
) ) )  -> 
( `  X )  <_ 
( `  ( X  \  { M } ) ) )
9189, 90nsyl 593 . . . . . . . . . 10  |-  ( ph  ->  -.  ( `  X
)  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )
92 fdm 5152 . . . . . . . . . . 11  |-  ( G : ( 1 ... ( `  ( X  \  { M } ) ) ) --> ( X 
\  { M }
)  ->  dom  G  =  ( 1 ... ( `  ( X  \  { M } ) ) ) )
9361, 92syl 14 . . . . . . . . . 10  |-  ( ph  ->  dom  G  =  ( 1 ... ( `  ( X  \  { M }
) ) ) )
9491, 93neleqtrrd 2186 . . . . . . . . 9  |-  ( ph  ->  -.  ( `  X
)  e.  dom  G
)
95 fsnunfv 5481 . . . . . . . . 9  |-  ( ( ( `  X )  e.  NN0  /\  M  e.  X  /\  -.  ( `  X )  e.  dom  G )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) )  =  M )
9615, 23, 94, 95syl3anc 1174 . . . . . . . 8  |-  ( ph  ->  ( ( G  u.  {
<. ( `  X ) ,  M >. } ) `  ( `  X ) )  =  M )
9796adantr 270 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) )  =  M )
9881, 32, 973brtr4d 3867 . . . . . 6  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) ) )
9998adantr 270 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  -> 
( ( G  u.  {
<. ( `  X ) ,  M >. } ) `  A )  <  (
( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) ) )
10056fveq2d 5293 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  -> 
( ( G  u.  {
<. ( `  X ) ,  M >. } ) `  B )  =  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) ) )
10199, 100breqtrrd 3863 . . . 4  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  -> 
( ( G  u.  {
<. ( `  X ) ,  M >. } ) `  A )  <  (
( G  u.  { <. ( `  X ) ,  M >. } ) `  B ) )
10257, 1012thd 173 . . 3  |-  ( ( ( ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  /\  B  e. 
{ ( `  X
) } )  -> 
( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A )  <  (
( G  u.  { <. ( `  X ) ,  M >. } ) `  B ) ) )
10313, 23zfz1isolemsplit 10208 . . . . . 6  |-  ( ph  ->  ( 1 ... ( `  X ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )
10434, 103eleqtrd 2166 . . . . 5  |-  ( ph  ->  B  e.  ( ( 1 ... ( `  ( X  \  { M }
) ) )  u. 
{ ( `  X
) } ) )
105 elun 3139 . . . . 5  |-  ( B  e.  ( ( 1 ... ( `  ( X  \  { M }
) ) )  u. 
{ ( `  X
) } )  <->  ( B  e.  ( 1 ... ( `  ( X  \  { M } ) ) )  \/  B  e.  {
( `  X ) } ) )
106104, 105sylib 120 . . . 4  |-  ( ph  ->  ( B  e.  ( 1 ... ( `  ( X  \  { M }
) ) )  \/  B  e.  { ( `  X ) } ) )
107106adantr 270 . . 3  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( B  e.  ( 1 ... ( `  ( X  \  { M } ) ) )  \/  B  e.  {
( `  X ) } ) )
10853, 102, 107mpjaodan 747 . 2  |-  ( (
ph  /\  A  e.  ( 1 ... ( `  ( X  \  { M } ) ) ) )  ->  ( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) ) )
10938ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  e.  RR )
11011ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  A  e.  RR )
111 elfzle2 9411 . . . . . . . 8  |-  ( B  e.  ( 1 ... ( `  X )
)  ->  B  <_  ( `  X ) )
11234, 111syl 14 . . . . . . 7  |-  ( ph  ->  B  <_  ( `  X
) )
113112ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  <_  ( `  X ) )
114 elsni 3459 . . . . . . 7  |-  ( A  e.  { ( `  X
) }  ->  A  =  ( `  X )
)
115114ad2antlr 473 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  A  =  ( `  X ) )
116113, 115breqtrrd 3863 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  <_  A
)
117109, 110, 116lensymd 7584 . . . 4  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  -.  A  <  B )
11873ad2antrr 472 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  X  C_  ZZ )
11961ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  G : ( 1 ... ( `  ( X  \  { M }
) ) ) --> ( X  \  { M } ) )
120 simpr 108 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )
121119, 120ffvelrnd 5419 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( G `  B )  e.  ( X  \  { M } ) )
122121eldifad 3008 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( G `  B )  e.  X
)
123118, 122sseldd 3024 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( G `  B )  e.  ZZ )
124123zred 8838 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( G `  B )  e.  RR )
12576zred 8838 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
126125ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  M  e.  RR )
127 breq1 3840 . . . . . . 7  |-  ( z  =  ( G `  B )  ->  (
z  <_  M  <->  ( G `  B )  <_  M
) )
12869ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  A. z  e.  X  z  <_  M )
129127, 128, 122rspcdva 2727 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( G `  B )  <_  M
)
130124, 126, 129lensymd 7584 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  -.  M  <  ( G `  B ) )
131115fveq2d 5293 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) ) )
13296ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) )  =  M )
133131, 132eqtrd 2120 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  M )
13434ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  e.  ( 1 ... ( `  X
) ) )
13518ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( `  X
)  -  1 )  e.  RR )
13616ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( `  X )  e.  RR )
13742adantl 271 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  <_  ( `  ( X  \  { M } ) ) )
13825ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
139137, 138breqtrd 3861 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  <_  (
( `  X )  - 
1 ) )
14046ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( `  X
)  -  1 )  <  ( `  X )
)
141109, 135, 136, 139, 140lelttrd 7587 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  B  <  ( `  X ) )
142109, 141gtned 7576 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( `  X )  =/=  B )
143134, 142, 50syl2anc 403 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  =  ( G `
 B ) )
144133, 143breq12d 3850 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  <->  M  <  ( G `
 B ) ) )
145130, 144mtbird 633 . . . 4  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  -.  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) )
146117, 1452falsed 653 . . 3  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  ( 1 ... ( `  ( X  \  { M }
) ) ) )  ->  ( A  < 
B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) ) )
14738ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  B  e.  RR )
148147ltnrd 7575 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  -.  B  <  B )
149114ad2antlr 473 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  A  =  ( `  X ) )
15055adantl 271 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  B  =  ( `  X ) )
151149, 150eqtr4d 2123 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  A  =  B )
152151breq1d 3847 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( A  < 
B  <->  B  <  B ) )
153148, 152mtbird 633 . . . 4  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  -.  A  <  B )
154125ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  M  e.  RR )
155154ltnrd 7575 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  -.  M  <  M )
156149fveq2d 5293 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) ) )
15796ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) )  =  M )
158156, 157eqtrd 2120 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  =  M )
159150fveq2d 5293 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  =  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  ( `  X ) ) )
160159, 157eqtrd 2120 . . . . . 6  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  =  M )
161158, 160breq12d 3850 . . . . 5  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
)  <->  M  <  M ) )
162155, 161mtbird 633 . . . 4  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  -.  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) )
163153, 1622falsed 653 . . 3  |-  ( ( ( ph  /\  A  e.  { ( `  X
) } )  /\  B  e.  { ( `  X ) } )  ->  ( A  < 
B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) ) )
164106adantr 270 . . 3  |-  ( (
ph  /\  A  e.  { ( `  X ) } )  ->  ( B  e.  ( 1 ... ( `  ( X  \  { M }
) ) )  \/  B  e.  { ( `  X ) } ) )
165146, 163, 164mpjaodan 747 . 2  |-  ( (
ph  /\  A  e.  { ( `  X ) } )  ->  ( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A
)  <  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  B
) ) )
1667, 103eleqtrd 2166 . . 3  |-  ( ph  ->  A  e.  ( ( 1 ... ( `  ( X  \  { M }
) ) )  u. 
{ ( `  X
) } ) )
167 elun 3139 . . 3  |-  ( A  e.  ( ( 1 ... ( `  ( X  \  { M }
) ) )  u. 
{ ( `  X
) } )  <->  ( A  e.  ( 1 ... ( `  ( X  \  { M } ) ) )  \/  A  e.  {
( `  X ) } ) )
168166, 167sylib 120 . 2  |-  ( ph  ->  ( A  e.  ( 1 ... ( `  ( X  \  { M }
) ) )  \/  A  e.  { ( `  X ) } ) )
169108, 165, 168mpjaodan 747 1  |-  ( ph  ->  ( A  <  B  <->  ( ( G  u.  { <. ( `  X ) ,  M >. } ) `  A )  <  (
( G  u.  { <. ( `  X ) ,  M >. } ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438    =/= wne 2255   A.wral 2359    \ cdif 2994    u. cun 2995    C_ wss 2997   {csn 3441   <.cop 3444   class class class wbr 3837   dom cdm 4428   -->wf 4998   -1-1-onto->wf1o 5001   ` cfv 5002    Isom wiso 5003  (class class class)co 5634   Fincfn 6437   RRcr 7328   1c1 7330    < clt 7501    <_ cle 7502    - cmin 7632   NN0cn0 8643   ZZcz 8720   ...cfz 9393  ♯chash 10148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-frec 6138  df-1o 6163  df-oadd 6167  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394  df-ihash 10149
This theorem is referenced by:  zfz1isolem1  10210
  Copyright terms: Public domain W3C validator