ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcvf2 Unicode version

Theorem nfcvf2 2374
Description: If  x and  y are distinct, then  y is not free in 
x. (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
nfcvf2  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2373 . 2  |-  ( -. 
A. y  y  =  x  ->  F/_ y x )
21naecoms 1748 1  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1371   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator