ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcvf2 Unicode version

Theorem nfcvf2 2363
Description: If  x and  y are distinct, then  y is not free in 
x. (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
nfcvf2  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )

Proof of Theorem nfcvf2
StepHypRef Expression
1 nfcvf 2362 . 2  |-  ( -. 
A. y  y  =  x  ->  F/_ y x )
21naecoms 1738 1  |-  ( -. 
A. x  x  =  y  ->  F/_ y x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator