ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcvf Unicode version

Theorem nfcvf 2371
Description: If  x and  y are distinct, then  x is not free in  y. (Contributed by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
nfcvf  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )

Proof of Theorem nfcvf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ x
z
2 nfcv 2348 . 2  |-  F/_ z
y
3 id 19 . 2  |-  ( z  =  y  ->  z  =  y )
41, 2, 3dvelimc 2370 1  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1371   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337
This theorem is referenced by:  nfcvf2  2372
  Copyright terms: Public domain W3C validator