ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcvf Unicode version

Theorem nfcvf 2335
Description: If  x and  y are distinct, then  x is not free in  y. (Contributed by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
nfcvf  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )

Proof of Theorem nfcvf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2312 . 2  |-  F/_ x
z
2 nfcv 2312 . 2  |-  F/_ z
y
3 id 19 . 2  |-  ( z  =  y  ->  z  =  y )
41, 2, 3dvelimc 2334 1  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1346   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301
This theorem is referenced by:  nfcvf2  2336
  Copyright terms: Public domain W3C validator