ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqf Unicode version

Theorem cleqf 2373
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2305. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cleqf.1  |-  F/_ x A
cleqf.2  |-  F/_ x B
Assertion
Ref Expression
cleqf  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )

Proof of Theorem cleqf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2199 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1551 . . 3  |-  F/ y ( x  e.  A  <->  x  e.  B )
3 cleqf.1 . . . . 5  |-  F/_ x A
43nfcri 2342 . . . 4  |-  F/ x  y  e.  A
5 cleqf.2 . . . . 5  |-  F/_ x B
65nfcri 2342 . . . 4  |-  F/ x  y  e.  B
74, 6nfbi 1612 . . 3  |-  F/ x
( y  e.  A  <->  y  e.  B )
8 eleq1 2268 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
9 eleq1 2268 . . . 4  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
108, 9bibi12d 235 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  <->  x  e.  B )  <->  ( y  e.  A  <->  y  e.  B
) ) )
112, 7, 10cbval 1777 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  B
)  <->  A. y ( y  e.  A  <->  y  e.  B ) )
121, 11bitr4i 187 1  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337
This theorem is referenced by:  abid2f  2374  n0rf  3473  eq0  3479  iunab  3974  iinab  3989  sniota  5262
  Copyright terms: Public domain W3C validator