ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqf Unicode version

Theorem cleqf 2364
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2296. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cleqf.1  |-  F/_ x A
cleqf.2  |-  F/_ x B
Assertion
Ref Expression
cleqf  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )

Proof of Theorem cleqf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2190 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1542 . . 3  |-  F/ y ( x  e.  A  <->  x  e.  B )
3 cleqf.1 . . . . 5  |-  F/_ x A
43nfcri 2333 . . . 4  |-  F/ x  y  e.  A
5 cleqf.2 . . . . 5  |-  F/_ x B
65nfcri 2333 . . . 4  |-  F/ x  y  e.  B
74, 6nfbi 1603 . . 3  |-  F/ x
( y  e.  A  <->  y  e.  B )
8 eleq1 2259 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
9 eleq1 2259 . . . 4  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
108, 9bibi12d 235 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  <->  x  e.  B )  <->  ( y  e.  A  <->  y  e.  B
) ) )
112, 7, 10cbval 1768 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  B
)  <->  A. y ( y  e.  A  <->  y  e.  B ) )
121, 11bitr4i 187 1  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by:  abid2f  2365  n0rf  3464  eq0  3470  iunab  3964  iinab  3979  sniota  5250
  Copyright terms: Public domain W3C validator