Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cleqf | Unicode version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2266. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
cleqf.1 | |
cleqf.2 |
Ref | Expression |
---|---|
cleqf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2159 | . 2 | |
2 | nfv 1516 | . . 3 | |
3 | cleqf.1 | . . . . 5 | |
4 | 3 | nfcri 2302 | . . . 4 |
5 | cleqf.2 | . . . . 5 | |
6 | 5 | nfcri 2302 | . . . 4 |
7 | 4, 6 | nfbi 1577 | . . 3 |
8 | eleq1 2229 | . . . 4 | |
9 | eleq1 2229 | . . . 4 | |
10 | 8, 9 | bibi12d 234 | . . 3 |
11 | 2, 7, 10 | cbval 1742 | . 2 |
12 | 1, 11 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1341 wceq 1343 wcel 2136 wnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: abid2f 2334 n0rf 3421 eq0 3427 iunab 3912 iinab 3927 sniota 5180 |
Copyright terms: Public domain | W3C validator |