ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2a Unicode version

Theorem rgen2a 2551
Description: Generalization rule for restricted quantification. Note that  x and  y are not required to be disjoint. This proof illustrates the use of dvelim 2036. Usage of rgen2 2583 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )
Assertion
Ref Expression
rgen2a  |-  A. x  e.  A  A. y  e.  A  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rgen2a
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . . 5  |-  F/ y  z  e.  A
2 eleq1 2259 . . . . 5  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
31, 2dvelimor 2037 . . . 4  |-  ( A. y  y  =  x  \/  F/ y  x  e.  A )
4 eleq1 2259 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
5 rgen2a.1 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )
65ex 115 . . . . . . . . 9  |-  ( x  e.  A  ->  (
y  e.  A  ->  ph ) )
74, 6biimtrdi 163 . . . . . . . 8  |-  ( y  =  x  ->  (
y  e.  A  -> 
( y  e.  A  ->  ph ) ) )
87pm2.43d 50 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  ->  ph ) )
98alimi 1469 . . . . . 6  |-  ( A. y  y  =  x  ->  A. y ( y  e.  A  ->  ph )
)
109a1d 22 . . . . 5  |-  ( A. y  y  =  x  ->  ( x  e.  A  ->  A. y ( y  e.  A  ->  ph )
) )
11 nfr 1532 . . . . . 6  |-  ( F/ y  x  e.  A  ->  ( x  e.  A  ->  A. y  x  e.  A ) )
126alimi 1469 . . . . . 6  |-  ( A. y  x  e.  A  ->  A. y ( y  e.  A  ->  ph )
)
1311, 12syl6 33 . . . . 5  |-  ( F/ y  x  e.  A  ->  ( x  e.  A  ->  A. y ( y  e.  A  ->  ph )
) )
1410, 13jaoi 717 . . . 4  |-  ( ( A. y  y  =  x  \/  F/ y  x  e.  A )  ->  ( x  e.  A  ->  A. y
( y  e.  A  ->  ph ) ) )
153, 14ax-mp 5 . . 3  |-  ( x  e.  A  ->  A. y
( y  e.  A  ->  ph ) )
16 df-ral 2480 . . 3  |-  ( A. y  e.  A  ph  <->  A. y
( y  e.  A  ->  ph ) )
1715, 16sylibr 134 . 2  |-  ( x  e.  A  ->  A. y  e.  A  ph )
1817rgen 2550 1  |-  A. x  e.  A  A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364   F/wnf 1474    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-ral 2480
This theorem is referenced by:  ordsucunielexmid  4568  onintexmid  4610  isoid  5860  issmo  6355  oawordriexmid  6537  ecopover  6701  ecopoverg  6704  1domsn  6887  unfiexmid  6988  axaddf  7952  axmulf  7953  subf  8245  negiso  8999  cnref1o  9742  xaddf  9936  ioof  10063  fzof  10236  xrnegiso  11444  reeff1  11882  gcdf  12164  eucalgf  12248  qredeu  12290  qnnen  12673  strsetsid  12736  hmeofn  14622  ismeti  14666  qtopbasss  14841  tgqioo  14875  peano4nninf  15737
  Copyright terms: Public domain W3C validator