ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2a Unicode version

Theorem rgen2a 2551
Description: Generalization rule for restricted quantification. Note that  x and  y are not required to be disjoint. This proof illustrates the use of dvelim 2036. Usage of rgen2 2583 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )
Assertion
Ref Expression
rgen2a  |-  A. x  e.  A  A. y  e.  A  ph
Distinct variable group:    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rgen2a
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . . 5  |-  F/ y  z  e.  A
2 eleq1 2259 . . . . 5  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
31, 2dvelimor 2037 . . . 4  |-  ( A. y  y  =  x  \/  F/ y  x  e.  A )
4 eleq1 2259 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
5 rgen2a.1 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )
65ex 115 . . . . . . . . 9  |-  ( x  e.  A  ->  (
y  e.  A  ->  ph ) )
74, 6biimtrdi 163 . . . . . . . 8  |-  ( y  =  x  ->  (
y  e.  A  -> 
( y  e.  A  ->  ph ) ) )
87pm2.43d 50 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  ->  ph ) )
98alimi 1469 . . . . . 6  |-  ( A. y  y  =  x  ->  A. y ( y  e.  A  ->  ph )
)
109a1d 22 . . . . 5  |-  ( A. y  y  =  x  ->  ( x  e.  A  ->  A. y ( y  e.  A  ->  ph )
) )
11 nfr 1532 . . . . . 6  |-  ( F/ y  x  e.  A  ->  ( x  e.  A  ->  A. y  x  e.  A ) )
126alimi 1469 . . . . . 6  |-  ( A. y  x  e.  A  ->  A. y ( y  e.  A  ->  ph )
)
1311, 12syl6 33 . . . . 5  |-  ( F/ y  x  e.  A  ->  ( x  e.  A  ->  A. y ( y  e.  A  ->  ph )
) )
1410, 13jaoi 717 . . . 4  |-  ( ( A. y  y  =  x  \/  F/ y  x  e.  A )  ->  ( x  e.  A  ->  A. y
( y  e.  A  ->  ph ) ) )
153, 14ax-mp 5 . . 3  |-  ( x  e.  A  ->  A. y
( y  e.  A  ->  ph ) )
16 df-ral 2480 . . 3  |-  ( A. y  e.  A  ph  <->  A. y
( y  e.  A  ->  ph ) )
1715, 16sylibr 134 . 2  |-  ( x  e.  A  ->  A. y  e.  A  ph )
1817rgen 2550 1  |-  A. x  e.  A  A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364   F/wnf 1474    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-ral 2480
This theorem is referenced by:  ordsucunielexmid  4567  onintexmid  4609  isoid  5857  issmo  6346  oawordriexmid  6528  ecopover  6692  ecopoverg  6695  1domsn  6878  unfiexmid  6979  axaddf  7935  axmulf  7936  subf  8228  negiso  8982  cnref1o  9725  xaddf  9919  ioof  10046  fzof  10219  xrnegiso  11427  reeff1  11865  gcdf  12139  eucalgf  12223  qredeu  12265  qnnen  12648  strsetsid  12711  hmeofn  14538  ismeti  14582  qtopbasss  14757  tgqioo  14791  peano4nninf  15650
  Copyright terms: Public domain W3C validator