ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 Unicode version

Theorem nfrmo1 2681
Description:  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1  |-  F/ x E* x  e.  A  ph

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2494 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfmo1 2067 . 2  |-  F/ x E* x ( x  e.  A  /\  ph )
31, 2nfxfr 1498 1  |-  F/ x E* x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1484   E*wmo 2056    e. wcel 2178   E*wrmo 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058  df-mo 2059  df-rmo 2494
This theorem is referenced by:  nfdisj1  4048
  Copyright terms: Public domain W3C validator