ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 Unicode version

Theorem nfrmo1 2670
Description:  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1  |-  F/ x E* x  e.  A  ph

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2483 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfmo1 2057 . 2  |-  F/ x E* x ( x  e.  A  /\  ph )
31, 2nfxfr 1488 1  |-  F/ x E* x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1474   E*wmo 2046    e. wcel 2167   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-eu 2048  df-mo 2049  df-rmo 2483
This theorem is referenced by:  nfdisj1  4023
  Copyright terms: Public domain W3C validator