ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 Unicode version

Theorem nfrmo1 2679
Description:  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1  |-  F/ x E* x  e.  A  ph

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2492 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 nfmo1 2066 . 2  |-  F/ x E* x ( x  e.  A  /\  ph )
31, 2nfxfr 1497 1  |-  F/ x E* x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1483   E*wmo 2055    e. wcel 2176   E*wrmo 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-eu 2057  df-mo 2058  df-rmo 2492
This theorem is referenced by:  nfdisj1  4034
  Copyright terms: Public domain W3C validator