Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfreudxy | Unicode version |
Description: Not-free deduction for restricted uniqueness. This is a version where and are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.) |
Ref | Expression |
---|---|
nfreudxy.1 | |
nfreudxy.2 | |
nfreudxy.3 |
Ref | Expression |
---|---|
nfreudxy |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfreudxy.1 | . . 3 | |
2 | nfcv 2312 | . . . . . 6 | |
3 | 2 | a1i 9 | . . . . 5 |
4 | nfreudxy.2 | . . . . 5 | |
5 | 3, 4 | nfeld 2328 | . . . 4 |
6 | nfreudxy.3 | . . . 4 | |
7 | 5, 6 | nfand 1561 | . . 3 |
8 | 1, 7 | nfeud 2035 | . 2 |
9 | df-reu 2455 | . . 3 | |
10 | 9 | nfbii 1466 | . 2 |
11 | 8, 10 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wnf 1453 weu 2019 wcel 2141 wnfc 2299 wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-cleq 2163 df-clel 2166 df-nfc 2301 df-reu 2455 |
This theorem is referenced by: nfreuxy 2644 |
Copyright terms: Public domain | W3C validator |