ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreudxy Unicode version

Theorem nfreudxy 2643
Description: Not-free deduction for restricted uniqueness. This is a version where  x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreudxy.1  |-  F/ y
ph
nfreudxy.2  |-  ( ph  -> 
F/_ x A )
nfreudxy.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfreudxy  |-  ( ph  ->  F/ x E! y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfreudxy
StepHypRef Expression
1 nfreudxy.1 . . 3  |-  F/ y
ph
2 nfcv 2312 . . . . . 6  |-  F/_ x
y
32a1i 9 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfreudxy.2 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeld 2328 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
6 nfreudxy.3 . . . 4  |-  ( ph  ->  F/ x ps )
75, 6nfand 1561 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
81, 7nfeud 2035 . 2  |-  ( ph  ->  F/ x E! y ( y  e.  A  /\  ps ) )
9 df-reu 2455 . . 3  |-  ( E! y  e.  A  ps  <->  E! y ( y  e.  A  /\  ps )
)
109nfbii 1466 . 2  |-  ( F/ x E! y  e.  A  ps  <->  F/ x E! y ( y  e.  A  /\  ps )
)
118, 10sylibr 133 1  |-  ( ph  ->  F/ x E! y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   F/wnf 1453   E!weu 2019    e. wcel 2141   F/_wnfc 2299   E!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-cleq 2163  df-clel 2166  df-nfc 2301  df-reu 2455
This theorem is referenced by:  nfreuxy  2644
  Copyright terms: Public domain W3C validator