| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfreudxy | Unicode version | ||
| Description: Not-free deduction for
restricted uniqueness. This is a version where
|
| Ref | Expression |
|---|---|
| nfreudxy.1 |
|
| nfreudxy.2 |
|
| nfreudxy.3 |
|
| Ref | Expression |
|---|---|
| nfreudxy |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfreudxy.1 |
. . 3
| |
| 2 | nfcv 2372 |
. . . . . 6
| |
| 3 | 2 | a1i 9 |
. . . . 5
|
| 4 | nfreudxy.2 |
. . . . 5
| |
| 5 | 3, 4 | nfeld 2388 |
. . . 4
|
| 6 | nfreudxy.3 |
. . . 4
| |
| 7 | 5, 6 | nfand 1614 |
. . 3
|
| 8 | 1, 7 | nfeud 2093 |
. 2
|
| 9 | df-reu 2515 |
. . 3
| |
| 10 | 9 | nfbii 1519 |
. 2
|
| 11 | 8, 10 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-cleq 2222 df-clel 2225 df-nfc 2361 df-reu 2515 |
| This theorem is referenced by: nfreuw 2706 |
| Copyright terms: Public domain | W3C validator |