Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfreudxy | Unicode version |
Description: Not-free deduction for restricted uniqueness. This is a version where and are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.) |
Ref | Expression |
---|---|
nfreudxy.1 | |
nfreudxy.2 | |
nfreudxy.3 |
Ref | Expression |
---|---|
nfreudxy |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfreudxy.1 | . . 3 | |
2 | nfcv 2308 | . . . . . 6 | |
3 | 2 | a1i 9 | . . . . 5 |
4 | nfreudxy.2 | . . . . 5 | |
5 | 3, 4 | nfeld 2324 | . . . 4 |
6 | nfreudxy.3 | . . . 4 | |
7 | 5, 6 | nfand 1556 | . . 3 |
8 | 1, 7 | nfeud 2030 | . 2 |
9 | df-reu 2451 | . . 3 | |
10 | 9 | nfbii 1461 | . 2 |
11 | 8, 10 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wnf 1448 weu 2014 wcel 2136 wnfc 2295 wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-cleq 2158 df-clel 2161 df-nfc 2297 df-reu 2451 |
This theorem is referenced by: nfreuxy 2640 |
Copyright terms: Public domain | W3C validator |