ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreudxy Unicode version

Theorem nfreudxy 2680
Description: Not-free deduction for restricted uniqueness. This is a version where  x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
Hypotheses
Ref Expression
nfreudxy.1  |-  F/ y
ph
nfreudxy.2  |-  ( ph  -> 
F/_ x A )
nfreudxy.3  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfreudxy  |-  ( ph  ->  F/ x E! y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfreudxy
StepHypRef Expression
1 nfreudxy.1 . . 3  |-  F/ y
ph
2 nfcv 2348 . . . . . 6  |-  F/_ x
y
32a1i 9 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfreudxy.2 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeld 2364 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
6 nfreudxy.3 . . . 4  |-  ( ph  ->  F/ x ps )
75, 6nfand 1591 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
81, 7nfeud 2070 . 2  |-  ( ph  ->  F/ x E! y ( y  e.  A  /\  ps ) )
9 df-reu 2491 . . 3  |-  ( E! y  e.  A  ps  <->  E! y ( y  e.  A  /\  ps )
)
109nfbii 1496 . 2  |-  ( F/ x E! y  e.  A  ps  <->  F/ x E! y ( y  e.  A  /\  ps )
)
118, 10sylibr 134 1  |-  ( ph  ->  F/ x E! y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   F/wnf 1483   E!weu 2054    e. wcel 2176   F/_wnfc 2335   E!wreu 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-cleq 2198  df-clel 2201  df-nfc 2337  df-reu 2491
This theorem is referenced by:  nfreuxy  2681
  Copyright terms: Public domain W3C validator