| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrmo1 | GIF version | ||
| Description: 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| nfrmo1 | ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2493 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfmo1 2067 | . 2 ⊢ Ⅎ𝑥∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1484 ∃*wmo 2056 ∈ wcel 2177 ∃*wrmo 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-eu 2058 df-mo 2059 df-rmo 2493 |
| This theorem is referenced by: nfdisj1 4043 |
| Copyright terms: Public domain | W3C validator |