![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrmo1 | GIF version |
Description: 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
nfrmo1 | ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2367 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfmo1 1960 | . 2 ⊢ Ⅎ𝑥∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1408 | 1 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 Ⅎwnf 1394 ∈ wcel 1438 ∃*wmo 1949 ∃*wrmo 2362 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 ax-i5r 1473 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-eu 1951 df-mo 1952 df-rmo 2367 |
This theorem is referenced by: nfdisj1 3835 |
Copyright terms: Public domain | W3C validator |