ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 GIF version

Theorem nfrmo1 2539
Description: 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2367 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 1960 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1408 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 102  wnf 1394  wcel 1438  ∃*wmo 1949  ∃*wrmo 2362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-eu 1951  df-mo 1952  df-rmo 2367
This theorem is referenced by:  nfdisj1  3835
  Copyright terms: Public domain W3C validator