ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 GIF version

Theorem nfrmo1 2704
Description: 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2516 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 2089 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1520 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1506  ∃*wmo 2078  wcel 2200  ∃*wrmo 2511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-eu 2080  df-mo 2081  df-rmo 2516
This theorem is referenced by:  nfdisj1  4071
  Copyright terms: Public domain W3C validator