ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 GIF version

Theorem nfrmo1 2680
Description: 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2493 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 2067 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1498 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1484  ∃*wmo 2056  wcel 2177  ∃*wrmo 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058  df-mo 2059  df-rmo 2493
This theorem is referenced by:  nfdisj1  4043
  Copyright terms: Public domain W3C validator