ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 GIF version

Theorem nfrmo1 2678
Description: 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2491 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 2065 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1496 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1482  ∃*wmo 2054  wcel 2175  ∃*wrmo 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-eu 2056  df-mo 2057  df-rmo 2491
This theorem is referenced by:  nfdisj1  4033
  Copyright terms: Public domain W3C validator