ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrmo1 GIF version

Theorem nfrmo1 2650
Description: 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 2463 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 2038 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1474 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1460  ∃*wmo 2027  wcel 2148  ∃*wrmo 2458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-eu 2029  df-mo 2030  df-rmo 2463
This theorem is referenced by:  nfdisj1  3994
  Copyright terms: Public domain W3C validator