ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfreu1 Unicode version

Theorem nfreu1 2680
Description:  x is not free in  E! x  e.  A ph. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1  |-  F/ x E! x  e.  A  ph

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 2493 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 nfeu1 2066 . 2  |-  F/ x E! x ( x  e.  A  /\  ph )
31, 2nfxfr 1498 1  |-  F/ x E! x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1484   E!weu 2055    e. wcel 2178   E!wreu 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058  df-reu 2493
This theorem is referenced by:  riota2df  5943
  Copyright terms: Public domain W3C validator