ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfs1 Unicode version

Theorem nfs1 1823
Description: If  y is not free in  ph,  x is not free in  [ y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1.1  |-  F/ y
ph
Assertion
Ref Expression
nfs1  |-  F/ x [ y  /  x ] ph

Proof of Theorem nfs1
StepHypRef Expression
1 nfs1.1 . . . 4  |-  F/ y
ph
21nfri 1533 . . 3  |-  ( ph  ->  A. y ph )
32hbsb3 1822 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
43nfi 1476 1  |-  F/ x [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1474   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-11 1520  ax-4 1524  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sb8  1870  sb8e  1871
  Copyright terms: Public domain W3C validator