ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfs1 GIF version

Theorem nfs1 1855
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1.1 𝑦𝜑
Assertion
Ref Expression
nfs1 𝑥[𝑦 / 𝑥]𝜑

Proof of Theorem nfs1
StepHypRef Expression
1 nfs1.1 . . . 4 𝑦𝜑
21nfri 1565 . . 3 (𝜑 → ∀𝑦𝜑)
32hbsb3 1854 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
43nfi 1508 1 𝑥[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1506  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-11 1552  ax-4 1556  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sb8  1902  sb8e  1903
  Copyright terms: Public domain W3C validator