ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfs1 GIF version

Theorem nfs1 1737
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1.1 𝑦𝜑
Assertion
Ref Expression
nfs1 𝑥[𝑦 / 𝑥]𝜑

Proof of Theorem nfs1
StepHypRef Expression
1 nfs1.1 . . . 4 𝑦𝜑
21nfri 1457 . . 3 (𝜑 → ∀𝑦𝜑)
32hbsb3 1736 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
43nfi 1396 1 𝑥[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1394  [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-11 1442  ax-4 1445  ax-i9 1468  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693
This theorem is referenced by:  sb8  1784  sb8e  1785
  Copyright terms: Public domain W3C validator