ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8 Unicode version

Theorem sb8 1870
Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb8e.1  |-  F/ y
ph
Assertion
Ref Expression
sb8  |-  ( A. x ph  <->  A. y [ y  /  x ] ph )

Proof of Theorem sb8
StepHypRef Expression
1 sb8e.1 . 2  |-  F/ y
ph
21nfs1 1823 . 2  |-  F/ x [ y  /  x ] ph
3 sbequ12 1785 . 2  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
41, 2, 3cbval 1768 1  |-  ( A. x ph  <->  A. y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   F/wnf 1474   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbnf2  2000  sb8eu  2058  nfraldya  2532  rabeq0  3480  abeq0  3481  sb8iota  5226
  Copyright terms: Public domain W3C validator