| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnal | GIF version | ||
| Description: The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| nnal | ⊢ (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnalim 1670 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | |
| 2 | 1 | con3i 633 | . 2 ⊢ (¬ ¬ ∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) |
| 3 | alnex 1523 | . 2 ⊢ (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 |
| This theorem is referenced by: bj-stal 15824 |
| Copyright terms: Public domain | W3C validator |