![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnal | GIF version |
Description: The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.) |
Ref | Expression |
---|---|
nnal | ⊢ (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnalim 1646 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | |
2 | 1 | con3i 632 | . 2 ⊢ (¬ ¬ ∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) |
3 | alnex 1499 | . 2 ⊢ (∀𝑥 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1351 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 |
This theorem is referenced by: bj-stal 14540 |
Copyright terms: Public domain | W3C validator |