ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexnim Unicode version

Theorem alexnim 1672
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
alexnim  |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )

Proof of Theorem alexnim
StepHypRef Expression
1 exnalim 1670 . . 3  |-  ( E. y  -.  ph  ->  -. 
A. y ph )
21alimi 1479 . 2  |-  ( A. x E. y  -.  ph  ->  A. x  -.  A. y ph )
3 alnex 1523 . 2  |-  ( A. x  -.  A. y ph  <->  -. 
E. x A. y ph )
42, 3sylib 122 1  |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1371   E.wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485
This theorem is referenced by:  nalset  4179  bj-nalset  15945
  Copyright terms: Public domain W3C validator