ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexnim Unicode version

Theorem alexnim 1694
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
alexnim  |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )

Proof of Theorem alexnim
StepHypRef Expression
1 exnalim 1692 . . 3  |-  ( E. y  -.  ph  ->  -. 
A. y ph )
21alimi 1501 . 2  |-  ( A. x E. y  -.  ph  ->  A. x  -.  A. y ph )
3 alnex 1545 . 2  |-  ( A. x  -.  A. y ph  <->  -. 
E. x A. y ph )
42, 3sylib 122 1  |-  ( A. x E. y  -.  ph  ->  -.  E. x A. y ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by:  nalset  4213  bj-nalset  16188
  Copyright terms: Public domain W3C validator