ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exnalim Unicode version

Theorem exnalim 1660
Description: One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exnalim  |-  ( E. x  -.  ph  ->  -. 
A. x ph )

Proof of Theorem exnalim
StepHypRef Expression
1 alexim 1659 . 2  |-  ( A. x ph  ->  -.  E. x  -.  ph )
21con2i 628 1  |-  ( E. x  -.  ph  ->  -. 
A. x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475
This theorem is referenced by:  exanaliim  1661  alexnim  1662  nnal  1663  dtru  4596  brprcneu  5551
  Copyright terms: Public domain W3C validator