Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exnalim | Unicode version |
Description: One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
Ref | Expression |
---|---|
exnalim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexim 1633 | . 2 | |
2 | 1 | con2i 617 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1341 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: exanaliim 1635 alexnim 1636 nnal 1637 dtru 4537 brprcneu 5479 |
Copyright terms: Public domain | W3C validator |