Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbi | Unicode version |
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
Ref | Expression |
---|---|
ifbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi2 463 | . . . 4 | |
2 | notbi 656 | . . . . 5 | |
3 | 2 | anbi2d 460 | . . . 4 |
4 | 1, 3 | orbi12d 783 | . . 3 |
5 | 4 | abbidv 2275 | . 2 |
6 | df-if 3506 | . 2 | |
7 | df-if 3506 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1335 wcel 2128 cab 2143 cif 3505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-if 3506 |
This theorem is referenced by: ifbid 3526 ifbieq2i 3528 fodjuomni 7086 fodjumkv 7097 1tonninf 10332 nninfsellemqall 13558 nninfomni 13562 |
Copyright terms: Public domain | W3C validator |