| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbi | Unicode version | ||
| Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| Ref | Expression |
|---|---|
| ifbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi2 467 |
. . . 4
| |
| 2 | notbi 667 |
. . . . 5
| |
| 3 | 2 | anbi2d 464 |
. . . 4
|
| 4 | 1, 3 | orbi12d 794 |
. . 3
|
| 5 | 4 | abbidv 2314 |
. 2
|
| 6 | df-if 3563 |
. 2
| |
| 7 | df-if 3563 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-if 3563 |
| This theorem is referenced by: ifbid 3583 ifbieq2i 3585 ifnebibdc 3605 fodjuomni 7224 fodjumkv 7235 nninfwlpoimlemg 7250 1tonninf 10550 lgsdi 15362 nninfsellemqall 15746 nninfomni 15750 |
| Copyright terms: Public domain | W3C validator |