Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbi | Unicode version |
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
Ref | Expression |
---|---|
ifbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi2 464 | . . . 4 | |
2 | notbi 661 | . . . . 5 | |
3 | 2 | anbi2d 461 | . . . 4 |
4 | 1, 3 | orbi12d 788 | . . 3 |
5 | 4 | abbidv 2288 | . 2 |
6 | df-if 3527 | . 2 | |
7 | df-if 3527 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 cab 2156 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-if 3527 |
This theorem is referenced by: ifbid 3547 ifbieq2i 3549 fodjuomni 7125 fodjumkv 7136 nninfwlpoimlemg 7151 1tonninf 10396 lgsdi 13732 nninfsellemqall 14048 nninfomni 14052 |
Copyright terms: Public domain | W3C validator |