ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbi Unicode version

Theorem ifbi 3546
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )

Proof of Theorem ifbi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anbi2 464 . . . 4  |-  ( (
ph 
<->  ps )  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
) )
2 notbi 661 . . . . 5  |-  ( (
ph 
<->  ps )  ->  ( -.  ph  <->  -.  ps )
)
32anbi2d 461 . . . 4  |-  ( (
ph 
<->  ps )  ->  (
( x  e.  B  /\  -.  ph )  <->  ( x  e.  B  /\  -.  ps ) ) )
41, 3orbi12d 788 . . 3  |-  ( (
ph 
<->  ps )  ->  (
( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) )  <-> 
( ( x  e.  A  /\  ps )  \/  ( x  e.  B  /\  -.  ps ) ) ) )
54abbidv 2288 . 2  |-  ( (
ph 
<->  ps )  ->  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }  =  { x  |  (
( x  e.  A  /\  ps )  \/  (
x  e.  B  /\  -.  ps ) ) } )
6 df-if 3527 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
7 df-if 3527 . 2  |-  if ( ps ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ps )  \/  (
x  e.  B  /\  -.  ps ) ) }
85, 6, 73eqtr4g 2228 1  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   {cab 2156   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-if 3527
This theorem is referenced by:  ifbid  3547  ifbieq2i  3549  fodjuomni  7125  fodjumkv  7136  nninfwlpoimlemg  7151  1tonninf  10396  lgsdi  13732  nninfsellemqall  14048  nninfomni  14052
  Copyright terms: Public domain W3C validator