| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbi | Unicode version | ||
| Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| Ref | Expression |
|---|---|
| ifbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi2 467 |
. . . 4
| |
| 2 | notbi 668 |
. . . . 5
| |
| 3 | 2 | anbi2d 464 |
. . . 4
|
| 4 | 1, 3 | orbi12d 795 |
. . 3
|
| 5 | 4 | abbidv 2324 |
. 2
|
| 6 | df-if 3574 |
. 2
| |
| 7 | df-if 3574 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-if 3574 |
| This theorem is referenced by: ifbid 3594 ifbieq2i 3596 ifnebibdc 3617 fodjuomni 7263 fodjumkv 7274 nninfwlpoimlemg 7289 1tonninf 10599 lgsdi 15564 nninfsellemqall 16067 nninfomni 16071 |
| Copyright terms: Public domain | W3C validator |