ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbi Unicode version

Theorem ifbi 3415
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )

Proof of Theorem ifbi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anbi2 456 . . . 4  |-  ( (
ph 
<->  ps )  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
) )
2 id 19 . . . . . 6  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
32notbid 628 . . . . 5  |-  ( (
ph 
<->  ps )  ->  ( -.  ph  <->  -.  ps )
)
43anbi2d 453 . . . 4  |-  ( (
ph 
<->  ps )  ->  (
( x  e.  B  /\  -.  ph )  <->  ( x  e.  B  /\  -.  ps ) ) )
51, 4orbi12d 743 . . 3  |-  ( (
ph 
<->  ps )  ->  (
( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) )  <-> 
( ( x  e.  A  /\  ps )  \/  ( x  e.  B  /\  -.  ps ) ) ) )
65abbidv 2206 . 2  |-  ( (
ph 
<->  ps )  ->  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }  =  { x  |  (
( x  e.  A  /\  ps )  \/  (
x  e.  B  /\  -.  ps ) ) } )
7 df-if 3398 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
8 df-if 3398 . 2  |-  if ( ps ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ps )  \/  (
x  e.  B  /\  -.  ps ) ) }
96, 7, 83eqtr4g 2146 1  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 665    = wceq 1290    e. wcel 1439   {cab 2075   ifcif 3397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-if 3398
This theorem is referenced by:  ifbid  3416  ifbieq2i  3418  fodjuomni  6865  1tonninf  9907  nninfsellemqall  12179  nninfomni  12183
  Copyright terms: Public domain W3C validator