| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | Unicode version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 |
|
| mtand.2 |
|
| Ref | Expression |
|---|---|
| mtand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 |
. 2
| |
| 2 | mtand.2 |
. . 3
| |
| 3 | 2 | ex 115 |
. 2
|
| 4 | 1, 3 | mtod 664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: frirrg 4386 phpm 6935 diffisn 6963 tridc 6969 nnnninfeq 7203 pm54.43 7269 addcanprleml 7698 addcanprlemu 7699 iseqf1olemklt 10607 isprm5lem 12334 pw2dvdseulemle 12360 sqne2sq 12370 pythagtriplem4 12462 pythagtriplem11 12468 pythagtriplem13 12470 ctinfomlemom 12669 rrgnz 13900 lssvancl1 13999 ivthinc 14963 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |