| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | Unicode version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 |
|
| mtand.2 |
|
| Ref | Expression |
|---|---|
| mtand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 |
. 2
| |
| 2 | mtand.2 |
. . 3
| |
| 3 | 2 | ex 115 |
. 2
|
| 4 | 1, 3 | mtod 664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: frirrg 4396 phpm 6961 diffisn 6989 tridc 6995 nnnninfeq 7229 pm54.43 7297 addcanprleml 7726 addcanprlemu 7727 iseqf1olemklt 10641 isprm5lem 12405 pw2dvdseulemle 12431 sqne2sq 12441 pythagtriplem4 12533 pythagtriplem11 12539 pythagtriplem13 12541 ctinfomlemom 12740 rrgnz 13972 lssvancl1 14071 ivthinc 15057 pwle2 15868 nninfnfiinf 15893 |
| Copyright terms: Public domain | W3C validator |