| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | Unicode version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 |
|
| mtand.2 |
|
| Ref | Expression |
|---|---|
| mtand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 |
. 2
| |
| 2 | mtand.2 |
. . 3
| |
| 3 | 2 | ex 115 |
. 2
|
| 4 | 1, 3 | mtod 667 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: frirrg 4440 phpm 7023 diffisn 7051 tridc 7057 nnnninfeq 7291 pm54.43 7359 addcanprleml 7797 addcanprlemu 7798 iseqf1olemklt 10715 isprm5lem 12658 pw2dvdseulemle 12684 sqne2sq 12694 pythagtriplem4 12786 pythagtriplem11 12792 pythagtriplem13 12794 ctinfomlemom 12993 rrgnz 14226 lssvancl1 14325 ivthinc 15311 pwle2 16323 nninfnfiinf 16348 |
| Copyright terms: Public domain | W3C validator |