ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtand Unicode version

Theorem mtand 667
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypotheses
Ref Expression
mtand.1  |-  ( ph  ->  -.  ch )
mtand.2  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
mtand  |-  ( ph  ->  -.  ps )

Proof of Theorem mtand
StepHypRef Expression
1 mtand.1 . 2  |-  ( ph  ->  -.  ch )
2 mtand.2 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
32ex 115 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
41, 3mtod 665 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem is referenced by:  frirrg  4410  phpm  6983  diffisn  7011  tridc  7017  nnnninfeq  7251  pm54.43  7319  addcanprleml  7757  addcanprlemu  7758  iseqf1olemklt  10675  isprm5lem  12548  pw2dvdseulemle  12574  sqne2sq  12584  pythagtriplem4  12676  pythagtriplem11  12682  pythagtriplem13  12684  ctinfomlemom  12883  rrgnz  14115  lssvancl1  14214  ivthinc  15200  pwle2  16107  nninfnfiinf  16132
  Copyright terms: Public domain W3C validator