ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtand Unicode version

Theorem mtand 665
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypotheses
Ref Expression
mtand.1  |-  ( ph  ->  -.  ch )
mtand.2  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
mtand  |-  ( ph  ->  -.  ps )

Proof of Theorem mtand
StepHypRef Expression
1 mtand.1 . 2  |-  ( ph  ->  -.  ch )
2 mtand.2 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
32ex 115 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
41, 3mtod 663 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem is referenced by:  frirrg  4352  phpm  6867  diffisn  6895  tridc  6901  nnnninfeq  7128  pm54.43  7191  addcanprleml  7615  addcanprlemu  7616  iseqf1olemklt  10487  isprm5lem  12143  pw2dvdseulemle  12169  sqne2sq  12179  pythagtriplem4  12270  pythagtriplem11  12276  pythagtriplem13  12278  ctinfomlemom  12430  lssvancl1  13459  ivthinc  14206  pwle2  14833
  Copyright terms: Public domain W3C validator