| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | Unicode version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 |
|
| mtand.2 |
|
| Ref | Expression |
|---|---|
| mtand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 |
. 2
| |
| 2 | mtand.2 |
. . 3
| |
| 3 | 2 | ex 115 |
. 2
|
| 4 | 1, 3 | mtod 665 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: frirrg 4410 phpm 6983 diffisn 7011 tridc 7017 nnnninfeq 7251 pm54.43 7319 addcanprleml 7757 addcanprlemu 7758 iseqf1olemklt 10675 isprm5lem 12548 pw2dvdseulemle 12574 sqne2sq 12584 pythagtriplem4 12676 pythagtriplem11 12682 pythagtriplem13 12684 ctinfomlemom 12883 rrgnz 14115 lssvancl1 14214 ivthinc 15200 pwle2 16107 nninfnfiinf 16132 |
| Copyright terms: Public domain | W3C validator |