Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtand | Unicode version |
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
mtand.1 | |
mtand.2 |
Ref | Expression |
---|---|
mtand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtand.1 | . 2 | |
2 | mtand.2 | . . 3 | |
3 | 2 | ex 114 | . 2 |
4 | 1, 3 | mtod 658 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem is referenced by: frirrg 4335 phpm 6843 diffisn 6871 tridc 6877 nnnninfeq 7104 pm54.43 7167 addcanprleml 7576 addcanprlemu 7577 iseqf1olemklt 10441 isprm5lem 12095 pw2dvdseulemle 12121 sqne2sq 12131 pythagtriplem4 12222 pythagtriplem11 12228 pythagtriplem13 12230 ctinfomlemom 12382 ivthinc 13415 pwle2 14031 |
Copyright terms: Public domain | W3C validator |