Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtand | Unicode version |
Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
mtand.1 | |
mtand.2 |
Ref | Expression |
---|---|
mtand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtand.1 | . 2 | |
2 | mtand.2 | . . 3 | |
3 | 2 | ex 114 | . 2 |
4 | 1, 3 | mtod 653 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem is referenced by: frirrg 4327 phpm 6827 diffisn 6855 tridc 6861 nnnninfeq 7088 pm54.43 7142 addcanprleml 7551 addcanprlemu 7552 iseqf1olemklt 10416 isprm5lem 12069 pw2dvdseulemle 12095 sqne2sq 12105 pythagtriplem4 12196 pythagtriplem11 12202 pythagtriplem13 12204 ctinfomlemom 12356 ivthinc 13221 pwle2 13838 |
Copyright terms: Public domain | W3C validator |