ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc Unicode version

Theorem alexdc 1607
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1633. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1529 . . 3  |-  F/ x A. xDECID 
ph
2 notnotbdc 862 . . . 4  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
32sps 1525 . . 3  |-  ( A. xDECID  ph 
->  ( ph  <->  -.  -.  ph ) )
41, 3albid 1603 . 2  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  A. x  -.  -.  ph ) )
5 alnex 1487 . 2  |-  ( A. x  -.  -.  ph  <->  -.  E. x  -.  ph )
64, 5bitrdi 195 1  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 824   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator