ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc Unicode version

Theorem alexdc 1665
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1691. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1587 . . 3  |-  F/ x A. xDECID 
ph
2 notnotbdc 877 . . . 4  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
32sps 1583 . . 3  |-  ( A. xDECID  ph 
->  ( ph  <->  -.  -.  ph ) )
41, 3albid 1661 . 2  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  A. x  -.  -.  ph ) )
5 alnex 1545 . 2  |-  ( A. x  -.  -.  ph  <->  -.  E. x  -.  ph )
64, 5bitrdi 196 1  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105  DECID wdc 839   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-gen 1495  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator