ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexdc Unicode version

Theorem alexdc 1612
Description: Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1638. (Contributed by Jim Kingdon, 2-Jun-2018.)
Assertion
Ref Expression
alexdc  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )

Proof of Theorem alexdc
StepHypRef Expression
1 nfa1 1534 . . 3  |-  F/ x A. xDECID 
ph
2 notnotbdc 867 . . . 4  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
32sps 1530 . . 3  |-  ( A. xDECID  ph 
->  ( ph  <->  -.  -.  ph ) )
41, 3albid 1608 . 2  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  A. x  -.  -.  ph ) )
5 alnex 1492 . 2  |-  ( A. x  -.  -.  ph  <->  -.  E. x  -.  ph )
64, 5bitrdi 195 1  |-  ( A. xDECID  ph 
->  ( A. x ph  <->  -. 
E. x  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 829   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator