| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 |
|
| Ref | Expression |
|---|---|
| exlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 |
. . 3
| |
| 2 | 1 | exlimiv 1621 |
. 2
|
| 3 | 2 | exlimiv 1621 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2808 cgsex4g 2809 opabss 4109 copsexg 4289 elopab 4305 epelg 4338 0nelelxp 4705 elvvuni 4740 optocl 4752 xpsspw 4788 relopabi 4804 relop 4829 elreldm 4905 xpmlem 5104 dfco2a 5184 unielrel 5211 oprabid 5978 1stval2 6243 2ndval2 6244 xp1st 6253 xp2nd 6254 poxp 6320 rntpos 6345 dftpos4 6351 tpostpos 6352 tfrlem7 6405 th3qlem2 6727 ener 6873 domtr 6879 unen 6910 xpsnen 6918 mapen 6945 ltdcnq 7512 archnqq 7532 enq0tr 7549 nqnq0pi 7553 nqnq0 7556 nqpnq0nq 7568 nqnq0a 7569 nqnq0m 7570 nq0m0r 7571 nq0a0 7572 nq02m 7580 prarloc 7618 axaddcl 7979 axmulcl 7981 hashfacen 10983 fundm2domnop0 10992 fsumdvdsmul 15496 bj-inex 15880 |
| Copyright terms: Public domain | W3C validator |