Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimivv | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 |
Ref | Expression |
---|---|
exlimivv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 | |
2 | 1 | exlimiv 1578 | . 2 |
3 | 2 | exlimiv 1578 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1429 ax-ie2 1474 ax-17 1506 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: cgsex2g 2748 cgsex4g 2749 opabss 4028 copsexg 4204 elopab 4218 epelg 4250 0nelelxp 4614 elvvuni 4649 optocl 4661 xpsspw 4697 relopabi 4711 relop 4735 elreldm 4811 xpmlem 5005 dfco2a 5085 unielrel 5112 oprabid 5850 1stval2 6100 2ndval2 6101 xp1st 6110 xp2nd 6111 poxp 6176 rntpos 6201 dftpos4 6207 tpostpos 6208 tfrlem7 6261 th3qlem2 6580 ener 6721 domtr 6727 unen 6758 xpsnen 6763 mapen 6788 ltdcnq 7311 archnqq 7331 enq0tr 7348 nqnq0pi 7352 nqnq0 7355 nqpnq0nq 7367 nqnq0a 7368 nqnq0m 7369 nq0m0r 7370 nq0a0 7371 nq02m 7379 prarloc 7417 axaddcl 7778 axmulcl 7780 hashfacen 10700 bj-inex 13453 |
Copyright terms: Public domain | W3C validator |