| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 |
|
| Ref | Expression |
|---|---|
| exlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 |
. . 3
| |
| 2 | 1 | exlimiv 1621 |
. 2
|
| 3 | 2 | exlimiv 1621 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1472 ax-ie2 1517 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2808 cgsex4g 2809 opabss 4108 copsexg 4288 elopab 4304 epelg 4337 0nelelxp 4704 elvvuni 4739 optocl 4751 xpsspw 4787 relopabi 4803 relop 4828 elreldm 4904 xpmlem 5103 dfco2a 5183 unielrel 5210 oprabid 5976 1stval2 6241 2ndval2 6242 xp1st 6251 xp2nd 6252 poxp 6318 rntpos 6343 dftpos4 6349 tpostpos 6350 tfrlem7 6403 th3qlem2 6725 ener 6871 domtr 6877 unen 6908 xpsnen 6916 mapen 6943 ltdcnq 7510 archnqq 7530 enq0tr 7547 nqnq0pi 7551 nqnq0 7554 nqpnq0nq 7566 nqnq0a 7567 nqnq0m 7568 nq0m0r 7569 nq0a0 7570 nq02m 7578 prarloc 7616 axaddcl 7977 axmulcl 7979 hashfacen 10981 fundm2domnop0 10990 fsumdvdsmul 15463 bj-inex 15847 |
| Copyright terms: Public domain | W3C validator |