| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 |
|
| Ref | Expression |
|---|---|
| exlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 |
. . 3
| |
| 2 | 1 | exlimiv 1644 |
. 2
|
| 3 | 2 | exlimiv 1644 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2836 cgsex4g 2837 opabss 4148 copsexg 4330 elopab 4346 epelg 4381 0nelelxp 4748 elvvuni 4783 optocl 4795 xpsspw 4831 relopabi 4847 relop 4872 reldmm 4942 elreldm 4950 xpmlem 5149 dfco2a 5229 unielrel 5256 oprabid 6033 1stval2 6301 2ndval2 6302 xp1st 6311 xp2nd 6312 poxp 6378 rntpos 6403 dftpos4 6409 tpostpos 6410 tfrlem7 6463 th3qlem2 6785 ener 6931 domtr 6937 unen 6969 xpsnen 6980 mapen 7007 ltdcnq 7584 archnqq 7604 enq0tr 7621 nqnq0pi 7625 nqnq0 7628 nqpnq0nq 7640 nqnq0a 7641 nqnq0m 7642 nq0m0r 7643 nq0a0 7644 nq02m 7652 prarloc 7690 axaddcl 8051 axmulcl 8053 hashfacen 11058 fundm2domnop0 11067 fsumdvdsmul 15665 bj-inex 16270 |
| Copyright terms: Public domain | W3C validator |