Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimivv | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 |
Ref | Expression |
---|---|
exlimivv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 | |
2 | 1 | exlimiv 1591 | . 2 |
3 | 2 | exlimiv 1591 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1442 ax-ie2 1487 ax-17 1519 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: cgsex2g 2766 cgsex4g 2767 opabss 4053 copsexg 4229 elopab 4243 epelg 4275 0nelelxp 4640 elvvuni 4675 optocl 4687 xpsspw 4723 relopabi 4737 relop 4761 elreldm 4837 xpmlem 5031 dfco2a 5111 unielrel 5138 oprabid 5885 1stval2 6134 2ndval2 6135 xp1st 6144 xp2nd 6145 poxp 6211 rntpos 6236 dftpos4 6242 tpostpos 6243 tfrlem7 6296 th3qlem2 6616 ener 6757 domtr 6763 unen 6794 xpsnen 6799 mapen 6824 ltdcnq 7359 archnqq 7379 enq0tr 7396 nqnq0pi 7400 nqnq0 7403 nqpnq0nq 7415 nqnq0a 7416 nqnq0m 7417 nq0m0r 7418 nq0a0 7419 nq02m 7427 prarloc 7465 axaddcl 7826 axmulcl 7828 hashfacen 10771 bj-inex 13942 |
Copyright terms: Public domain | W3C validator |