| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 |
|
| Ref | Expression |
|---|---|
| exlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 |
. . 3
| |
| 2 | 1 | exlimiv 1622 |
. 2
|
| 3 | 2 | exlimiv 1622 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2813 cgsex4g 2814 opabss 4124 copsexg 4306 elopab 4322 epelg 4355 0nelelxp 4722 elvvuni 4757 optocl 4769 xpsspw 4805 relopabi 4821 relop 4846 elreldm 4923 xpmlem 5122 dfco2a 5202 unielrel 5229 oprabid 5999 1stval2 6264 2ndval2 6265 xp1st 6274 xp2nd 6275 poxp 6341 rntpos 6366 dftpos4 6372 tpostpos 6373 tfrlem7 6426 th3qlem2 6748 ener 6894 domtr 6900 unen 6932 xpsnen 6941 mapen 6968 ltdcnq 7545 archnqq 7565 enq0tr 7582 nqnq0pi 7586 nqnq0 7589 nqpnq0nq 7601 nqnq0a 7602 nqnq0m 7603 nq0m0r 7604 nq0a0 7605 nq02m 7613 prarloc 7651 axaddcl 8012 axmulcl 8014 hashfacen 11018 fundm2domnop0 11027 fsumdvdsmul 15578 bj-inex 16042 |
| Copyright terms: Public domain | W3C validator |