![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm11.53 | GIF version |
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm11.53 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1808 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | |
2 | 1 | albii 1411 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓)) |
3 | ax-17 1471 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | 3 | hbal 1418 | . . 3 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) |
5 | 4 | 19.23h 1439 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) |
6 | 2, 5 | bitri 183 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1294 ∃wex 1433 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-i5r 1480 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |