| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm11.53 | GIF version | ||
| Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| pm11.53 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.21v 1887 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | |
| 2 | 1 | albii 1484 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓)) | 
| 3 | ax-17 1540 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 3 | hbal 1491 | . . 3 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | 
| 5 | 4 | 19.23h 1512 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) | 
| 6 | 2, 5 | bitri 184 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |