ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm11.53 GIF version

Theorem pm11.53 1883
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.53 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem pm11.53
StepHypRef Expression
1 19.21v 1861 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
21albii 1458 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))
3 ax-17 1514 . . . 4 (𝜓 → ∀𝑥𝜓)
43hbal 1465 . . 3 (∀𝑦𝜓 → ∀𝑥𝑦𝜓)
5419.23h 1486 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
62, 5bitri 183 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator