| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26-2 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| r19.26-2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 2623 |
. . 3
| |
| 2 | 1 | ralbii 2503 |
. 2
|
| 3 | r19.26 2623 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: fununi 5326 issgrpv 13047 issgrpn0 13048 isnsg2 13333 dfrhm2 13710 df2idl2rng 14064 |
| Copyright terms: Public domain | W3C validator |