ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26-2 Unicode version

Theorem r19.26-2 2606
Description: Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
r19.26-2  |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )

Proof of Theorem r19.26-2
StepHypRef Expression
1 r19.26 2603 . . 3  |-  ( A. y  e.  B  ( ph  /\  ps )  <->  ( A. y  e.  B  ph  /\  A. y  e.  B  ps ) )
21ralbii 2483 . 2  |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  A. x  e.  A  ( A. y  e.  B  ph  /\  A. y  e.  B  ps ) )
3 r19.26 2603 . 2  |-  ( A. x  e.  A  ( A. y  e.  B  ph 
/\  A. y  e.  B  ps )  <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )
42, 3bitri 184 1  |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-ral 2460
This theorem is referenced by:  fununi  5286  issgrpv  12815  issgrpn0  12816  isnsg2  13068
  Copyright terms: Public domain W3C validator