ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrpv Unicode version

Theorem issgrpv 12645
Description: The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
issgrpn0.b  |-  B  =  ( Base `  M
)
issgrpn0.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
issgrpv  |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) ) ) )
Distinct variable groups:    x, B, y, z    x, M, y, z    x,  .o. , y, z
Allowed substitution hints:    V( x, y, z)

Proof of Theorem issgrpv
StepHypRef Expression
1 issgrpn0.b . . . 4  |-  B  =  ( Base `  M
)
2 issgrpn0.o . . . 4  |-  .o.  =  ( +g  `  M )
31, 2ismgm 12611 . . 3  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
43anbi1d 462 . 2  |-  ( M  e.  V  ->  (
( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )  <->  ( A. x  e.  B  A. y  e.  B  (
x  .o.  y )  e.  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) ) )
51, 2issgrp 12644 . 2  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
6 r19.26-2 2599 . 2  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .o.  y
)  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )  <->  ( A. x  e.  B  A. y  e.  B  (
x  .o.  y )  e.  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
74, 5, 63bitr4g 222 1  |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480  Mgmcmgm 12608  Smgrpcsgrp 12642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610  df-sgrp 12643
This theorem is referenced by:  ismnd  12655  dfgrp2e  12733
  Copyright terms: Public domain W3C validator