ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrpv Unicode version

Theorem issgrpv 13236
Description: The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
issgrpn0.b  |-  B  =  ( Base `  M
)
issgrpn0.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
issgrpv  |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) ) ) )
Distinct variable groups:    x, B, y, z    x, M, y, z    x,  .o. , y, z
Allowed substitution hints:    V( x, y, z)

Proof of Theorem issgrpv
StepHypRef Expression
1 issgrpn0.b . . . 4  |-  B  =  ( Base `  M
)
2 issgrpn0.o . . . 4  |-  .o.  =  ( +g  `  M )
31, 2ismgm 13189 . . 3  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
43anbi1d 465 . 2  |-  ( M  e.  V  ->  (
( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )  <->  ( A. x  e.  B  A. y  e.  B  (
x  .o.  y )  e.  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) ) )
51, 2issgrp 13235 . 2  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
6 r19.26-2 2635 . 2  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .o.  y
)  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) )  <->  ( A. x  e.  B  A. y  e.  B  (
x  .o.  y )  e.  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
74, 5, 63bitr4g 223 1  |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Mgmcmgm 13186  Smgrpcsgrp 13233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mgm 13188  df-sgrp 13234
This theorem is referenced by:  issgrpd  13244  sgrppropd  13245  ismnd  13251  dfgrp2e  13360
  Copyright terms: Public domain W3C validator